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To Sarah Seastone (1937–2003), 
who loved to play with geometry, 

and who gave countless hours to Ask Dr. Math
as editor, archivist, and Math Doctor.
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Here’s a square. If you tell me its sides meas-
ure 2 units long, I can tell you its diagonal (the
distance from corner A to C or B to D) is about
2.828. Is it exactly 2.828? No, it’s exactly 2√2. But
the diagonal is precisely 2√2 only if the sides
measure exactly 2. There isn’t a ruler in the world
that can measure that precisely—there’s some
amount of uncertainty in all measurements.
Think about this page of your book: Are the cor-
ners dog-eared yet? Are they perfectly square

even if you look at them under a microscope? Do the sides meet in
a perfect right angle? Imagine being able to see the atoms in the
paper: do you think they line up exactly? Our rulers aren’t fine-
grained enough for us to make that kind of measurement, and our
world doesn’t have neat enough edges.

Maybe you’re wondering, then how do we ever build things or
make machines that work if we can’t measure things precisely? The
answer is that we can usually find a way to measure precisely
enough. If my ruler says a piece of paper is 6 inches long and I fold
it in half, I know the result will be about 3 inches. A tape measure
will tell a good carpenter enough to make a porch that looks square,
even, and level, without the carpenter’s knowing its measurements
to an accurate hundredth of an inch.

But what if perfect forms existed that we could measure pre-
cisely? They do in our minds. These are what we study in geometry.
Geometry has applications in the physical world, and its principles
have made it possible for us to build amazing things from our imper-
fect materials and measurements.

This book will introduce you to the definitions and properties of
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two-dimensional objects, including squares, rectangles, and cir-
cles. You’ll learn how to work with them and how changing one of
their dimensions changes other dimensions. You’ll also learn about
three-dimensional objects: what properties they have in common
with two-dimensional forms and what sets them apart. Finally, we’ll
talk about patterns on surfaces, specifically symmetry and tessel-
lations in two dimensions.

Before you know it, you’ll be seeing perfect geometry all around
you. Dr. Math welcomes you to the world and language of geometry!

2 Introduction



Two-dimensional geometry, coordinate plane geometry, Cartesian

geometry, and planar (pronounced PLANE-er) geometry refer to the

same thing: the study of geometric forms in the coordinate plane. Do

you remember the coordinate plane? It’s a grid system in which two

numbers tell you the location of a point—the first, x, tells you how far

left or right to go from the origin (the center point), and the second

number, y, tells you how far up or down to go. The y-axis is vertical

and the x-axis is

horizontal (like

the horizon).
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You’ll see a lot more of the coor-
dinate plane in geometry, but
sometimes all that matters is know-
ing that a figure is in the plane or
two-dimensional without knowing
a precise address for it. This part
will introduce you to some of the
most common figures in two-
dimensional geometry and give
you some names for their parts and
ways to work with them.

In this part, Dr. Math explains

• points, lines, and planes

• angles

• triangles

• quadrilaterals

Points, Lines, and Planes
Points, lines, and planes correspond to talking about no dimensions,
one dimension, and two dimensions in the coordinate plane. A line
is one-dimensional, since one number, the distance from zero, tells
you where you are. A plane is two-dimensional, since you need 
x and y to locate a point. A point is dimensionless. It consists only of
location, so it’s only possible to be one place if you’re on a point—
you don’t need any extra numbers to tell you where you are. Points,
lines, and planes are the foundations of the whole system of
geometry.

But point, line, and plane are all undefined terms. How can that
be? Well, any definition we could give them would depend on the
definition of some other mathematical idea that these three terms
help define. In other words, the definition would be circular!

4 Dr. Math Introduces Geometry



Dear Leon,

Your definition would require us to first define “ray” and “direction.”
Can you do that without reference to “point,” “line,” and “plane”?

Think of it this way: math is a huge building, in which each part
is built by a logical chain of reasoning upon other parts below it.
What is the foundation? What is everything else built on?

There must be some lowest level that is not based on anything
else; otherwise, the whole thing is circular and never really starts
anywhere. The undefined terms are part of that foundation, along
with rules that tell us how to prove things are true. The goal of math-
ematicians has not been to make math entirely self-contained, with
no undefined terms, but to minimize the number of definitions so
that we have to accept only a few basics, and from there we will dis-
cover all of math to be well defined. Also, the goal is to make those
terms obvious so that we have no trouble accepting them, even
though we can’t formally prove their existence.

To put it another way, these terms do have a definition in human
terms—that is, we can easily understand what they mean. They sim-
ply don’t have a mathematical definition in the sense of depending
only on other previously defined terms.

—Dr. Math, The Math Forum
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Dear Dr. Math,

I know that they call point, line, and
plane the undefined terms of geometry, 
but is there a way to give those terms a
definition? I’ve been thinking, could a
line be defined as the joining of two rays
going in separate directions? I’ve never
really thought that anything couldn’t have
a definition, so is it possible for any of
these geometric terms to be defined?

Yours truly,

Leon

Undefined
Geometry
Terms
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Dear Lorraine,

The word “point” is undefined in geometry. But it is pretty easy for
us to describe a point, even though it can’t be defined. A point is an
entity that has only one characteristic: its position. A point has no
size, color, smell, or feel. When we talk about points, we are referring
to one specific location.

For example, along a number line the number 2 exists at just 
one point. Points are infinitely small, which means the point 
at 2 is different from the point at 2.000000001. Here’s a picture of a
number line:

If you want to distinguish one place along a number line, you
“point” at it. You label that place with the corresponding number
and refer to it with that number.

Now, how do you distinguish a location in two-dimensional space

Dear Dr. Math,

Define a point, please.

Yours truly,

Lorraine

What Is a
Point?



(e.g., a sheet of paper)? Imagine that we have two number lines: one
horizontal and the other vertical. We are pointing at a place p:

How do we describe where the point p is? We can’t just say p is
at 2 because we don’t know which number line that refers to. Is it at
2 along the horizontal number line or the vertical one?

To describe where p is, you must talk about where it is both hor-
izontally and vertically. So, you can say

p is at 2 horizontally and 1 vertically

However, this is a mouthful. Because describing points in two
dimensions is really useful, we have defined some conventions to
make life easier. We call the horizontal number line the x-axis and
the vertical number line the y-axis. The convention for talking about
points in two dimensions is to write

(position along x-axis, position along y-axis)

Therefore,

p is at (2, 1)

Points in two dimensions can be described by any pair of num-
bers. For example, (4, 5), (6.23432, 3.14), and (–12, 4) are all points.

—Dr. Math, The Math Forum
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Dear Leon,

In geometry, you can think of a line just like a normal straight line,
with a couple of special features. The things that make a line in
geometry different from a line in any other context—for example, art
class—are that it goes on forever in both directions, it’s perfectly
straight, and it’s not thick.

Mathematicians say that their lines have zero thickness, which
is pretty hard to imagine. When we draw lines on paper, they always
have at least a little bit of width. But when we study lines in geom-
etry, we think of them as having no width at all.

Here’s how a lot of people draw lines on paper. The arrows at the
ends mean that the line continues forever in both directions:

Rays and line segments are a lot like lines. A ray is like a line,
except that it only goes on forever in one direction. So it starts at one
point and goes on forever in some direction. You can think of the light
coming from the sun as an example of a ray: the starting point is at the
sun, and the light goes on forever away from the sun.

Here’s how we draw rays:

A line segment is a little chunk of a line. It starts at one point, goes
for a while, and ends at another point. We draw it like this:

8 Dr. Math Introduces Geometry

Dear Dr. Math,

I need to know what a ray, a line segment,
and a line are.

Sincerely,

Leon

Rays, Line
Segments,
and Lines



Sometimes we like to attach little dots to represent the endpoints
of rays and line segments like this:

—Dr. Math, The Math Forum
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2 1  2  3  4  5  6    Angles
There are angles all around us—between the hands on a clock, the
opening created by a door, even the joints of your body. Any time two
lines or line segments or rays intersect, they make angles.

What makes one angle different from another? Angles differ in
how far open their “jaws” are. If you think of opening an angle start-
ing with two line segments on top of each other, you could open it a
little bit, or a pretty big amount, or a whole lot; you could bend it
back on itself until the line segments are almost on top of each other
again. We often measure angles in degrees to describe how far open
the angles are.

In this section, we’ll talk about the different kinds of angles and
the ways we measure them.

FOR FUTURE REFERENCE
Later in your geometry career, you’ll start seeing a notation for lines and segments

that will help you tell them apart. Here’s a line:

The notation looks like this:

AB
—

means the line segment between and including points A and B; you can also say
“segment AB.”

AB
↔ 

means the line indicated by those same points; you can also say “line AB.”

This line could also be called “line l”—lowercase letters are sometimes used for
this purpose.



Dear Lorraine,

A vertex is the point at which two rays of an angle or two sides of a
polygon meet. Vertices (pronounced VER-tih-seez) is the plural of
vertex.

Introduction to Two-Dimensional (2-D) Geometric Figures 11

Dear Dr. Math,

What does vertex mean?

Sincerely,

Lorraine

What Is a
Vertex?
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A triangle has three vertices.

—Dr. Math, The Math Forum

Dear Leon,

There are three main types of angles. We tell them apart by how big
they are. (Angles are often measured in degrees; there are 360
degrees in a circle.) Here they are:

Dear Dr. Math,

How can I remember what the types of angles
mean—for example, acute angle or right
angle?

Yours truly,

Leon

Types of
Angles:
Acute,
Right,
Obtuse,
and Reflex
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We can start with the right angle: a right angle measures exactly
90 degrees. It’s called a right angle because it stands upright. Just
remember it’s an upright angle.

Next is the acute angle. Acute angles measure less than 90
degrees. The word “acute” comes from a word that means “sharp.”
Remember that a sharp pencil or a sharp knife has an acute angle
at its point or blade. An acute pain is a sharp pain. Acupuncture
uses sharp needles. And, if all else fails, you can remember that an
acute angle can cut you!

Finally, we have the wide-open obtuse angles, which measure
between 90 and 180 degrees. The word “obtuse” comes from a Latin
verb meaning “to make blunt or dull.” If a person isn’t very sharp
(doesn’t have an acute intelligence), he may be called obtuse. If that
doesn’t stick in your mind, just remember that if it isn’t right or acute,
it’s obtuse.

I should mention a fourth kind of angle: the
reflex angle. A reflex angle is the other side of
any other type of angle. Reflex angles meas-
ure more than 180 degress. For example, in
this diagram, the angle labeled A is the reflex
angle. (The other angle in the diagram is
obtuse.)

One meaning of reflex is “to bend back”;
and the angle kind of looks bent back, like an
elbow bent too far. Actually, some people can make a reflex angle
with their elbow, and some can’t. Can you?

I hope the names are memorable for you now.

—Dr. Math, The Math Forum
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Dear Dr. Math,

In class we’re studying complements and sup-
plements of angles. I do not understand any
of the terminology behind the problems. Today
we took a test, and one of the questions was
to find the complement of this angle, c
degrees, and I didn’t even know where to
begin. Another was to find the degrees in 
the third angle in an isosceles triangle, x
degrees, x – 10, or something like that. Can
you explain this a little better?

Sincerely,

Lorraine

Complementary
and 
Supplementary
Angles



Dear Lorraine,

Part of the problem here is that the names “complement” and “sup-
plement” are kind of confusing, since the literal meanings of these
words aren’t different enough for us to know which is which, other
than by memorizing them.

What are complements and supplements?
If you place two angles next to each other so that they add up to

90 degrees, we say that the
angles are complements.

If you place two angles
next to each other so that
they add up to 180 degrees,
we say that the angles are
supplements.

Here are some examples of complements and supplements:

Complements Supplements

30 and 60 degrees 30 and 150 degrees

2 and 88 degrees 2 and 178 degrees

14 and 76 degrees 14 and 166 degrees

So what you need to remember is which one adds up to 90
degrees and which one adds up to 180 degrees.

How can you keep them straight? The person who runs the Math
Forum’s Geometry Problem of the Week tells me that she remembers
them this way: c comes before s, and 90 comes before 180. It’s the best
idea I’ve heard so far.

Introduction to Two-Dimensional (2-D) Geometric Figures 15



If you know that two angles are complements or supplements,
you can figure out one given the other. How? Well, if they’re supple-
ments, you know that they have to add up to 180:

this + that = 180

So it must be true that

this = 180 – that

and

that = 180 – this

You can do the corresponding calculations for complements
using 90 degrees instead of 180 degrees.

So whenever you see the phrase “the supplement of (some
angle)°,” you can immediately translate it to “180° – (the angle)°.”
When you have a value for the angle, you end up with something
like

the supplement of 26° = (180° – 26°)

which you can just simplify to get a single number. But if you only
have a variable like x, or an expression for the angle, like x – 10, then
you just have to deal with that by substituting the variable or the
expression in the equation. For example:

the supplement of (x° – 10°) = [180° – (x° – 10°)]

Note that you have to put the expression in parentheses (or
brackets), or you can end up with the wrong thing. In this case,

[180° – (x° – 10°)] is not the same as (180° – x° – 10°)
(180° – x° + 10°) (180° – 10° – x°)

(190° – x°) (170° – x°)

Why should you care about complements and supplements?
Well, in geometry you’re constantly dividing things into triangles

in order to make them easier to work with. And in every triangle, 

16 Dr. Math Introduces Geometry



the measures of the interior angles add up to 180 degrees. So if 
you know two angles, the third is the supplement of the sum of the
other two.

The nicest kind of triangle to work with is a right triangle. In a
right triangle, you have one right angle and two other angles. Since
they all have to add up to 180 degrees, and since the right angle
takes up 90 of those degrees, the other two angles must add up to 90
degrees. So if you know one of the acute angles in a right triangle,
the other is just the complement of that angle.

—Dr. Math, The Math Forum
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ORDER OF OPERATIONS
In case you’ve forgotten, here’s a quick review of the correct order of operations

for any expression:

1. Parentheses or brackets

2. Exponents

3. Multiplication and division (left to right)

4. Addition and subtraction (left to right)

For more about this topic, see Section 5, Part 1 of Dr. Math Gets You Ready for
Algebra.

Dear Dr. Math,

Please explain alternate and corresponding
angles.

Sincerely,

Leon

Alternate
and Corre-
sponding
Angles
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Dear Leon,

Let’s first look at a diagram that we can refer to when we define cor-
responding angles and alternate angles:

There are a lot of numbers in this diagram! Don’t worry, though—
we’ll figure out what everything means.

Assume that the two horizontal lines are parallel (that means
they have the same slope and never intersect). The diagonal is
called a transversal, and as you can see, the intersection of the
transversal with the horizontal lines makes lots of different angles.
I labeled these angles 1 through 8. Whenever you have a setup like
this in which you have two parallel lines and a transversal inter-
secting them, you can think about corresponding angles and alter-
nate angles.

Look at the diagram. Do you see how we could easily split the
angles into two groups? Angles 1, 2, 3, and 4 would be the first
group—they are the angles the transversal makes with the higher
horizontal line. Angles 5, 6, 7, and 8 would be the second group—they
are the angles the transversal makes with the lower horizontal line.

Can you see how the bottom set of four angles looks a lot like the
top set of four angles? We say that two angles are corresponding
angles if they occupy corresponding positions in the two sets of
angles. For example, 1 and 5 are corresponding angles because they
are both in the top left position: 1 is in the top left corner of the set of
angles {1, 2, 3, 4}, while 5 is in the top left corner of the set of angles
{5, 6, 7, 8}.
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Similarly, 3 and 7 are corresponding angles. There are two more
pairs of corresponding angles in the diagram. Can you find them?

One neat and helpful fact about corresponding angles is that
they are always equal. Can you see why? (Think about the way the
nonparallel line intersects the parallel lines.)

Let’s move on to alternate angles. 
We say that two angles are alternate angles if they fulfill three

requirements:

1. They must both be on the interior (inside or middle part) of the
diagram between the parallel lines, or both on the exterior
(outside or outer part) of the parallel lines. By interior angles,
I mean angles 3, 4, 5, and 6; by exterior angles, I mean angles
1, 2, 7, and 8.

2. They must be on opposite sides of the transversal. Hence 3 and
5 cannot be alternate angles because they are both to the left
of the transversal.

3. If two angles are alternate, one must be from the group of
angles that has the top horizontal line as one of its sides, and
the other angle must be from the group of angles that has the
bottom horizontal line as one of its sides. In other words, the
last requirement says that a pair of alternate angles must con-
sist of one angle from the set {1, 2, 3, 4} and one angle from the
set {5, 6, 7, 8}.

This sounds complicated, but if we look at the diagram and apply
the three requirements, it will become clear what we mean by alter-
nate angles.

1. The first requirement tells us that 3, 4, 5, and 6 can only be
paired with each other and that 1, 2, 7, and 8 can only be paired
with each other. That rules out a lot of possibilities.

2. The second requirement tells us that a pair of alternate angles
must be on opposite sides of the transversal. So, 2 and 8 can-
not be a pair of alternate angles. Similarly, 4 and 6 cannot be
a pair of alternate angles.



3. Applying the final constraint, we see that there are exactly four
pairs of alternate angles in the diagram. One pair is 3 and 6.
Angles 3 and 6 fulfill all the requirements of alternate angles:
they are interior angles, they are on opposite sides of the trans-
versal, and they come from different groups of angles. Can you
find the other three pairs of alternate angles?

A helpful fact about alternate angles is that they, too, are equal
in measure. This fact can make proofs much easier! Can you see why
they are equal?

—Dr. Math, The Math Forum

Dear Lorraine,

Here’s a clue from everyday English usage: “interior” means
“inside,” and “exterior” means “outside.” (You may see those words
on paint can labels, for example.)

So alternate interior angles are on opposite sides of the trans-
versal, inside or between the parallel lines, like the pair of angles
labeled 1 and the pair labeled 2 here:

20 Dr. Math Introduces Geometry

Dear Dr. Math,

I have been trying to find out what alter-
nate exterior angles are for hours! My
teacher assigned us a vocabulary sheet for
geometry, and the only term I can’t find is
alternate exterior angles. I know what an
alternate interior angle is but not an exte-
rior one. I am completely clueless. Please
help!

Sincerely,

Lorraine

Alternate
Exterior
Angles



Alternate exterior angles are also on opposite sides of the trans-
versal but outside the parallel lines:

I suspect a lot of students hear these phrases and never stop to
think what the individual words (alternate, interior, exterior) mean
because they expect math terms to be incomprehensible and unre-
lated to real life! Sometimes math makes more sense than you real-
ize at first.

—Dr. Math, The Math Forum
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Dear Leon,

Get a piece of paper and draw an angle, which we’ll call angle 1:

Dear Dr. Math,

I don’t understand vertical angles! I
believe that vertical angles are equal. Am
I right? How can you tell if angles are
vertical?

Sincerely,

Leon

Vertical
Angles

FINDING MATH DEFINITIONS
Maybe I can help so that you do not have to look for hours for the definition of a
math term the next time. To find out what a word means, I would first go to a regular
English dictionary; then maybe try one of the dictionary or encyclopedia resources
listed in our online FAQ, or search our site (mathforum.org); then go to google.com
and enter a phrase such as “alternate exterior angles” to see if there is a definition
on the Web. You’ll find it!
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Now take a ruler and extend each ray on the other side of the
angle to make two intersecting lines:

You’ve just made a new angle 2. The angles 1 and 2 form a pair of ver-
tical angles; they are called vertical angles because they are on
opposite sides of the same vertex.

Think of the handles and blades of a very simple pair of scissors
(with no bend to the handles) as another example. Notice that what-
ever angle you open the scissors to, the handles will be at the same
angle, because vertical angles are always congruent—that is, they
have the same measure.

The important thing to remember is that not all congruent angles
are vertical; angles are vertical because of where they are, not just
because they happen to have the same measure. For example, in this
diagram, 3 and 4 are congruent but not vertical angles:
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Whenever you see a pair of lines crossing, you will have two
pairs of vertical angles. In the diagram below, the vertical angles
are 1 and 2, and 3 and 4:

—Dr. Math, The Math Forum

NAMING ANGLES

If we wanted to talk about the angles in this diagram, we could call them angles A,
B, and C. But if we add a few more objects, it becomes more difficult to tell which
angle is identified by any single letter. For example, in this diagram:

If we referred to angle C, which angle would we mean? Mathematicians use an
angle symbol, ∠, and three letters to name specific angles in diagrams like this.
You’ll find ∠BCE here:
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Dear Dr. Math,

I want to know how to measure acute,
reflex, and obtuse angles with a
protractor.

Sincerely,

Lorraine

Measuring
Angles
with a
Protractor

and ∠ACE here:

and ∠FCE here:

You’ll probably see “line DE” or “DE
↔

” instead of “∠DCE,” though. Just keep
clear in your mind that there’s no bend at C in line DE!



Dear Lorraine,

As you know, a protractor is a tool for measuring angles on paper.
The one I’m looking at, which probably looks a lot like yours, looks
like this: it’s a half-circle of clear plastic, with a line along the
straight edge that has a small hole cut out of the middle of it, and a
hash mark through the edges of the hole perpendicular to the long
line, to help you line up the angle you’re measuring. All along the
curved edge are little hash marks in degrees, to tell you how big the
angle is. On my protractor, there are two sets of numbers: one goes
from 0 to 180 clockwise, from left to right, and the other, inner set goes
from 0 to 180 counter-clockwise, from right to left. Of course in the
middle of the curve where they meet, both sets say 90!

So to measure an acute angle (less than 90 degrees) with this pro-
tractor, put the little hole at the vertex of the angle, and align the
long line with one of the rays of the angle. Choose the scale that has
the zero on the ray of the angle that you lined up with it. Read off the
number from this scale at the point where the other side of the angle
crosses the protractor. (You may have to use a straightedge to extend
this side of the angle if it’s not long enough to reach the protractor’s
marks.)

Measuring obtuse angles (between 90 and 180 degrees) works
exactly the same way.
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Some protractors have only one scale, with zero on both ends and
90 in the middle. If so, then when you measure an obtuse angle,
you’ll read a number between 0 and 90, then you’ll need to subtract
that number from 180 to get the measure of the obtuse angle. For
instance:

The protractor reads 45 for this angle, but the angle is really

180° – 45° = 135°

A reflex angle is the outside of an acute, obtuse, or right angle.
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Start at 0° here

This angle
measures 125°
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To measure a reflex angle, use the protractor to read the meas-
ure of the inside of the angle. Then
subtract from 360 to get the measure of
the reflex angle.

For example, here is a reflex angle.
Note that in this case the other angle is
an acute angle:

The sum of the two angles is 360
degrees, right? So if we measure the
acute angle instead of the reflex angle
and subtract its measure from 360 degrees, we’ll have the measure
of the reflex angle: 360º – 30º = 330º.

—Dr. Math, The Math Forum



Dear Leon,

A circle has 360 degrees, but it also has 400 gradients and approxi-
mately 6.2831853 radians. It all depends on what units you measure
your angles with.

Allow me to explain. Say you think 360 is a terrible number, and
you think that you want a circle to have 100 “somethings” in it. Well,
you divide up the circle into 100 equal angles, all coming out from
the center, then you call one of these angles a “zink.” Then you’ve
just defined a new way to measure a circle. One hundred zinks are
in a circle.

This invented unit, the zink, is much like the degree, except the
degree is smaller. (Why? Think of how many quarters it takes to
make a dollar and how many pennies. Which is bigger?) They are
both angle measures, just as the inch and centimeter are both units
of length.

The ancient Babylonians (not the Greeks) decided that a circle
should contain 360 degrees. In 1 degree there are 60 minutes (that’s
the same word as the unit of time, but this means one-sixtieth of a
degree). Furthermore, in 1 minute there are 60 seconds (again,
although they are the same word, this is a unit of measure for
angles, not time).
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Dear Dr. Math,

I would like to know why a circle measures
360 degrees. Is there any special reason for
this, or did the Greeks just kind of pick it
out? I’m sure there’s a rational explana-
tion, but I just can’t seem to figure it
out. I hate accepting things that I don’t
understand, and this is something that
really bugs me. Please help!

Sincerely,

Leon

Degrees in
a Circle
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The French in the early days of the metric system, and the British
separately around 1900, chose a different way to divide the circle,
specifically into 400 gradients. So 1 gradient is a tad bit smaller than
a degree.

And what’s a radian? It’s a measurement mathematicians use for
angles because it’s a way to divide the circle into a number of parts
that happen to make certain computations easy. The way they
decided it was this: They took a circle, say with radius 1 cm. They took
a piece of string and made marks on it, evenly spaced 1 cm apart.
Then they took the string and wrapped it around the circle. They then
asked how many 1-cm pieces of string fit around the circle, and they
got the answer of about 6.2831853 pieces. They decided that the angle
that a 1-cm piece of string covers as it is wrapped about the edge of
a circle of radius 1 cm should be called 1 radian. Weird but true. So
there are about 6.2831853 radians in a circle, which means that radi-
ans are a lot bigger than degrees. That funny decimal number just
happens to be equal to 2 pi, or 2π. We’ll talk about pi later in the book.
It’s a really important number, especially for circles.

Now, you might be wondering why the Babylonians chose the
number 360. The reason is that their number system was based on
60. To compare, we base our number system on 10. For us, 10 is a nice,
round number, and we find it very convenient to count in multiples
of 10. But the Babylonians liked 60.

Why this system was nice for them, nobody knows, but modern
mathematicians agree that 60 is a nice number, too, because 60 = 
2 ⋅ 2 ⋅ 3 ⋅ 5 and 360 = 2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 5. What’s so neat about that, you
ask? Well, you will find that 360 is divisible by 2, 3, 4, 5, 6, 8, 9, 10, 12,
15, 18, and 20. There are few other numbers as small as 360 that have
so many different factors. This makes the degree a very nice unit to
divide the circle into an equal number of parts: 120 degrees is one
third of a circle, 90 degrees is one fourth, and so on.

So while a zink, being  1—100 of a circle, may seem nice and round
to us, it isn’t so convenient for dividing a pie into thirds. I mean,
whoever heard of asking for a 331–3 zink piece of pie?

—Dr. Math, The Math Forum
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Just as there are various kinds of angles, which we discussed in the
previous section, there are also various kinds of triangles. In this
section, we’ll talk about what the differences are and how the
Pythagorean theorem can help you find the side lengths of one com-
mon type.
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Dear Dr. Math,

What is the difference between an isosceles
triangle and a scalene triangle? I always
forget which is which!

Yours truly,

Lorraine

Types of
Triangles



Dear Lorraine,

A useful trick in trying to remember these names and many others
is to think about the pieces of words that they’re made from.

For example, “lateral” always has to do with sides. The fins on
the side of a fish are “lateral fins” (as opposed to “dorsal fins,” which
are on the back). Trade between two countries is “bilateral trade.” In
football, a “lateral” is when the quarterback tosses the ball to the
side instead of throwing it forward, as in a regular pass. And so on.

So “equilateral” means “equal sides,” and in fact, all the sides of
an equilateral triangle are equal. (That means its angles are also
the same, and figures with sides and angles all the same are called
regular.

The prefix “iso-” means “same.” An “isometric” exercise is one in
which the position of the muscles stays the same (as when you press
your two hands together). Two things that have the same shape are
“isomorphic.” And so on.

“Sceles” comes from the Greek “skelos,” which means “leg.” So
an isosceles triangle is one that has the “same legs” as opposed to
“equal sides.” In an equilateral triangle, all the sides are the same;
but in an isosceles triangle, only two of the sides, called the legs,
must have the same measure. The other side is called the base.
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“Scalene” comes from the Greek word for “uneven,” and a sca-
lene triangle is uneven: no side is the same length as any other. But
to be honest, usually I just remember that “scalene” means “not
equilateral or isosceles.”

So what can be learned from this? One lesson is that when you’re
having trouble remembering a word, it’s often a good idea to consult
a dictionary to find out the history of the word, because understand-
ing how a word was created can help it seem less random. Another
lesson is that many of the words that we find in math and science
were made up by people who were familiar with Latin and Greek. So
studying word roots, prefixes, and suffixes from these languages can
make it much easier to learn mathematical and scientific words!

—Dr. Math, The Math Forum
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Dear Leon,

Pythagoras was a Greek mathematician who lived around 569–475
B.C. The Babylonians came up with this idea a thousand years ear-
lier, but Pythagoras might have been the first to prove it, so it was
named for him. The Pythagorean theorem has to do with the lengths
of the sides of a right triangle. A right triangle is any triangle that
has one right angle (an angle of 90 degrees)—like this:

If the sides next to the right angle are of lengths a and b, and the
third side is of length c, then the Pythagorean theorem says that 
a2 + b2 = c2. That is, (a ⋅ a) + (b ⋅ b) = (c ⋅ c). When people say this, they
say, “a squared plus b squared equals c squared”:

a2 + b2 = c2

Dear Dr. Math,

What is the Pythagorean theorem?

Yours truly,

Leon

The
Pythagorean
Theorem

REMINDER : SQUARES AND SQUARE ROOTS
When you multiply a number by itself, such as a ⋅ a, you call it “squaring the num-
ber,” and you write it as a2. The reverse of that process is called “taking the square
root of a number.” The square root of a2 is written √a2 and is equal to a. The square
root sign, √   , is also called a radical.



Some numbers that work in this equation are 3, 4, and 5; and 5,
12, and 13.

So if you are told that you have a right tri-
angle whose legs are 3 and 4 units, as in this
diagram, then you can use this theorem to find
out the length of the third side. The third side
(the side opposite the right angle in a right tri-
angle) is called the hypotenuse.

32 + 42 = 9 + 16
= 25

If c2 = 25
c = √25

So c = 5.
—Dr. Math, The Math Forum
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THE PYTHAGOREAN THEOREM

When would I use the Pythagorean theorem?
The Pythagorean theorem is used any time we have a right tri-
angle, we know the length of two sides, and we want to find the
third side.

For example, I was in the furniture store the other day and
saw a nice entertainment center on sale at a good price. The
space for the TV set measured 17 × 21 inches. I didn’t want to take
the time to go home to measure my TV set or get the cabinet
home only to find that it was too small.

I knew my TV set had a 27-inch screen, and TV screens are
measured on the diagonal. To figure out whether my TV would
fit, I calculated the diagonal of the TV space in the entertain-
ment center using the Pythagorean theorem:

172 + 212 = 289 + 441
= 730

So the diagonal of the entertainment center is the square root
of 730, which is about 27.02 inches.

It seemed like my TV would fit, but the 27-inch diagonal on
the TV set measures the screen only, not the housing, speakers,
and control buttons. These extend the TV set’s diagonal several
inches, so I figured that my TV would not fit in the cabinet.
When I got home, I measured my TV set and found that the
entire set was 21 × 27.5 inches, so it was a good decision not to
buy the entertainment center.

The Pythagorean theorem is also frequently used in more
advanced math. The applications that use the Pythagorean
theorem include computing the distance between points on a
plane; computing perimeters, surface areas, and volumes of
various geometric shapes; and calculating the largest and
smallest possible perimeters of objects, or surface areas and
volumes of various geometric shapes.

ASK 
DR. MATH
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Dear Lorraine,

Thanks for a carefully explained question!
The two special kinds of triangles you describe are special

because two sides are related in a simple way. For the 45–45–90 
triangle,

Dear Dr. Math,

I need help figuring out something my teacher
calls “special right triangles.” I’ve tried to
start with a and b, but I get confused. I don’t
know the next step.

For example, one
problem is: find a and
b. Simplify radicals
whenever possible.

I need help with
45–45–90 triangles and
30–60–90 triangles. If
you have any available
notes to show me step by
step, I’ll be very grateful.

Yours truly,

Lorraine

Special
Right
Triangles
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Since the two base angles, the 45-degree angles, are equal, it’s
an isosceles triangle, and therefore the two sides opposite the 45-
degree angles are equal. You can get the length of the other side
using the Pythagorean theorem:

c2 = a2 + a2

c = √a2 + a2

= √2a2

= a ⋅ √2

That is, the hypotenuse is the square root of 2 times the length of the
other sides.

For the 30–60–90 triangle, the important thing to know is that it’s
exactly half of an equilateral triangle:

This means that the side opposite the 30-degree angle is half the
length of the hypotenuse. Again, you can get the length of the third
side by using the Pythagorean theorem:

So in your first problem, we’re dealing with another 30–60–90
triangle, and a must be half of 14, or 7 (just imagine completing the
equilateral triangle by reflecting the triangle over side b if this isn’t
clear). You can use the Pythagorean theorem directly on these num-
bers, or multiply 7 by the square root of 3 from the formula above to
get the answer.

If you prefer, just try memorizing these diagrams:

b a a a a a a= − = − = = ⋅( ) ( )2 4 3 32 2 2 2 2
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If you have trouble remembering which triangle uses the √3 and
which uses the √2 , just remember that the 45–45–90 triangle has two
different edge lengths, and it gets the √2 . The 30–60–90 triangle has
three different edge lengths, and it gets the √3.

—Dr. Math, The Math Forum

Dear Leon,

There are several ways that you can show the angles of a triangle
add up to 180 degrees. The first example I’ll give you involves paper
and pencil. The other three examples are more formal in that you
construct a figure and use some of the rules of geometry. If you don’t
understand the last few examples all the way, don’t worry about it.
You’ll cover that stuff in more detail later on.

1. Here’s a simple way to demonstrate that the three angles of a
triangle add up to 180 degrees: the angles can be put together

Dear Dr. Math,

We were wondering why all the angles in a
triangle add up to 180 degrees. Several of
us are trying to prove our teacher wrong and
draw a triangle differently!

Yours truly,

Leon

Why Do the
Angles of 
a Triangle
Add Up 
to 180
Degrees?
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to form a straight angle (a line). Make a triangle out of paper,
tear off the three corners, and fit them together at the points.
They should always form a straight line:

Here’s another way to do pretty much the same thing: make
a paper triangle in which angles 1 and 3 are both acute (2 may
be obtuse) and fold the corners in (dividing two edges in half)
so that they all meet on the remaining edge:

You will end up with a rectangle surrounding three angles
that together form its bottom edge: 180 degrees.

2. Let ABC be a triangle. Draw a line through C parallel to AB
(we’ll label two points on this line D and E for clarity):

Because line BC cuts across two parallel lines, that makes it a
transversal. So ∠BCE = ∠CBA and ∠ACD = ∠CAB because they
are alternate interior angles. Since ∠BCE + ∠BCA + ∠ACD =
180° (they form a straight angle), the same goes for the angles
of triangle ABC.



3. Let ABC be a triangle. Let A′ be the midpoint of BC, B′ the mid-
point of AC, and C′ the midpoint of AB:

In this way we form four congruent triangles A′B′C′, AB′C′,
A′BC′, and A′B′C, of which the sum of the angles is equal to the
sum of the angles of ABC. If we leave out the angles of trian-
gle ABC, three straight angles are left for the sum of three of
the triangles. So each triangle must have a sum equal to one
straight angle: 180 degrees.

4. Let ABC be a triangle, and consider the following figure:

Note that the three angles marked with ✽ add up to one com-
plete turn—that is, 360 degrees. Note also that each of the
angles marked with ✽ makes a straight angle when added to
one of the angles of ABC. So the three angles marked with ✽

added to the angles of ABC add up to 3 ⋅ 180° = 540°. That leaves
540° – 360° = 180° for the angles of ABC.

—Dr. Math, The Math Forum

Introduction to Two-Dimensional (2-D) Geometric Figures 41



42 Dr. Math Introduces Geometry

41  2  3  4   5  6    Quadrilaterals
A polygon (any figure made up of connected straight line segments)
that has four sides is called a quadrilateral—remember “lateral”
means “side,” as in “equilateral,” and “quad” means “four.” But just
knowing something’s a quadrilateral doesn’t tell you much about its
angles or sides except that there are four of them. In this section,
we’ll discuss the various types of quadrilaterals.

Dear Dr. Math,

I really need to know the seven types of
quadrilaterals. Please give me a hand!

Yours truly,

Lorraine

The Seven
Quadrilat-
erals
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Dear Lorraine,

I think you’re talking about these:

Here are the things you ought to know:

1. A rhombus is an equilateral quadrilateral (all sides have the
same length).

2. A rectangle is an equiangular quadrilateral (all angles have
the same measure).

3. A square is an equilateral, equiangular quadrilateral, or
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simply a regular quadrilateral. Every square is also a rhombus
(because it’s equilateral) and a rectangle (because it’s
equiangular).

4. A parallelogram is a quadrilateral with exactly two pairs of
parallel sides. Every rhombus is a parallelogram and so is
every rectangle. And if every rectangle is a parallelogram,
then so is every square.

5. There are two definitions commonly used for trapezoid. The
traditional American definition is a quadrilateral with exactly
one pair of parallel sides. The British and “new” American
definition is a quadrilateral with at least one pair of parallel
sides. In this book we will use the second definition, which
means that all parallelograms (including rhombuses, rectan-
gles, and squares) may be considered trapezoids, because
they all have at least one pair of parallel sides. (If the trapezoid
is isosceles, then the nonparallel sides have the same length
and the base angles are equal.)

6. A kite may or may not have parallel sides; it does have two
pairs of adjacent sides with equal lengths—that is, instead of
being across from each other, the sides with equal lengths are
next to each other. So a kite can look like the kind of toy you’d
fly in a field on a windy day. But a rhombus and a square are
also special cases of a kite: while they do have two pairs of
adjacent sides that have equal lengths, those lengths are also
equal to each other.

Just as there are two definitions for the trapezoid, there are
two definitions for the kite. We use the one given above; some
people use one that says the two pairs of congruent sides must
have different lengths, so for them, a rhombus (and therefore a
square) is not a kite.

7. A scalene quadrilateral has four unequal sides that are not
parallel.

—Dr. Math, The Math Forum



Dear Leon,

Your definition of a kite seems awkward. The people who wrote the
definition want to make sure you don’t count three consecutive con-
gruent sides as two pairs, so they say you can’t use the same side
twice. I can’t imagine why they bother saying “at least two pairs,”
since once you’ve chosen two separate pairs, you’ve used up all the
sides. Maybe they want to make sure that they allow for the square,
in which there are four pairs of congruent sides, giving two ways to
choose two sides that are disjoint to fit the other rule. In any case, the
square is a kite by the definition we use. (If you are studying kites in
school, check your math book and with your teacher to be sure they
both use the same definition, since there’s another definition by
which the square is not a kite.)

Now for your other question. Here’s a diagram showing the
relationships between shapes. The lines indicate that the lower term
is a subset, or special case, of the upper term. For example, a
rectangle is a type of parallelogram and a type of isosceles trape-
zoid, but a rectangle is not a type of rhombus.
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Dear Dr. Math,

I am looking for a diagram that will accu-
rately display the relation among trape-
zoids, parallelograms, kites, rhombuses,
rectangles, and squares. Is a square also a
kite? Is a kite defined as “a quadrilateral
having at least two pairs of adjacent sides
congruent, with no sides used twice in the
pairs”? Why the “at least two pairs” and the
“no sides used twice”?

Yours truly,

Leon

The Venn
Diagram to
Classify
Quadri-
laterals



Keep your quadrilateral definitions handy, and check to see if the
diagram makes sense to you. Here are some of the things it should
tell you. Some quadrilaterals are kites, some are trapezoids, and
some are scalene quadrilaterals. Some trapezoids are parallelo-
grams, some are isosceles, and some are neither. Parallelograms
that are also isosceles trapezoids are rectangles; those that are both
isosceles trapezoids and rhombuses are squares.

Not only are all rectangles parallelograms, but all of the proper-
ties of parallelograms are true for rectangles. Two properties of par-
allelograms are that the opposite sides are parallel and the
diagonals bisect each other. Since rectangles and rhombuses are
parallelograms, then they also have opposite sides that are paral-
lel and diagonals that bisect each other.

Note that I am using the definition of a trapezoid that says that
at least one pair of the sides must be parallel. If we have two 
sides that are parallel, then it’s also a parallelogram. Some math
books use a different definition in which exactly one pair of sides is
parallel.

—Dr. Math, The Math Forum
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R   esources on the Web
Learn more about two-dimensional geometric figures at these sites:

Math Forum: Ask Dr. Math: Point and Line
mathforum.org/library/drmath/view/55297.html

A point has no dimension (I’m assuming), and a line, which has
dimension, is a bunch of points strung together. How does some-
thing without dimension create something with dimension?

Math Forum: Problems of the Week: Middle School: Back Yard Trees
mathforum.org/midpow/solutions/solution.ehtml?puzzle=35

How many different quadrilaterals can be formed by joining any
four of the nine trees in my backyard?

Math Forum: Problems of the Week: Middle School: Picture-Perfect Geometry
mathforum.org/midpow/solutions/solution.ehtml?puzzle=97

Graph four points and name the figure that you have drawn.

Math Forum: Problems of the Week: Middle School: Shapes Rock
mathforum.org/midpow/solutions/solution.ehtml?puzzle=93

Find the number of diagonals in a polygon of forty sides.

Math Forum: Sketchpad for Little Ones
mathforum.org/sketchpad/littleones/

A variety of introductory Geometer’s Sketchpad activities originally
written for second through sixth grades but that older students have
also found useful.

Introduction to Two-Dimensional (2-D) Geometric Figures 47



Shodor Organization: Project Interactivate: Angles
shodor.org/interactivate/activities/angles/

Students practice their knowledge of acute, obtuse, and alternate
angles.

Shodor Organization: Project Interactivate: Triangle Explorer
shodor.org/interactivate/activities/triangle/

Students learn about areas of triangles and about the Cartesian
coordinate system through experimenting with triangles drawn on
a grid.

Shodor Organization: Project Interactivate: Pythagorean Explorer
shodor.org/interactivate/activities/pyth2/

Students find the length of a side of a right triangle by using the
Pythagorean theorem, then check their answers.
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In planar, or two-dimensional, geometry, area and perimeter are two

of the most common characteristics of shapes that you’ll have to work

with. Perimeter is the distance around a shape, and area is the surface

that is surrounded by the perimeter. They correspond to the dimen-

sions involved in the figures: perimeter is one-dimensional, and area

is two-dimensional. (When you get to three-dimensional geometry, you

can talk about volume, which corresponds to the third dimension.)
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In this part, Dr. Math explains

• area and perimeter

• units of area

• areas and perimeters of parallelograms and trapezoids

Area and Perimeter
We’ve talked about some of the basic shapes of geometry; now let’s
look at some of their properties. Once you know how many sides a
shape has, one of the first questions you might ask is: how big is it?
There are two very common ways to measure size. One is area: How
much space does the shape cover? If the shape were a table, how big
would a tablecloth have to be to cover it without any material hang-
ing over the sides? Another measure of size is perimeter: What’s the
distance around the shape? If the shape were a cake, how long a
squirt of icing would it take to outline the top?



Dear Lorraine,

The word “perimeter” means “distance around.” Think about a rec-
tangle like this one:

One way to walk around the rectangle would be to move from A
to B (a distance of 3 feet), then from B to C (a distance of 2 feet), then
from C to D (a distance of 3 feet), and finally from D to A (a distance
of 2 feet). The total distance involved would be 3 ft + 2 ft + 3 ft + 2 ft,
or 10 ft. So that’s the perimeter of the rectangle: 10 feet.

Area is more complicated, because it involves two dimensions,
whereas perimeter involves only one. The way I always think of area
is in terms of the amount of paint that I would need to cover a shape.
If one shape has twice as much area than another shape, I’d need
twice as much paint for it.

We use different measurement units for area than for perimeter.
We use a linear measure for perimeter—something that measures
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Dear Dr. Math,

I do not understand area and perimeter. Can
you give me some idea about how they work?

Thanks,

Lorraine

Under-
standing
Area and
Perimeter



along a line, like feet or centimeters. For area, we need to measure
in two dimensions, so we use square units, like square feet or square
centimeters. A square foot is the area of a square whose sides are
one foot in length. (A shape that measures one square foot in area
may not be shaped like a square, but its area is the same as that of
the square.)

For a rectangle, we compute area by multiplying the length by
the width:

One thing it’s important to note is that we can have two (or more)
rectangles with the same perimeter but different areas:

In fact, for a given perimeter, we can make the area as close to
zero as we’d like by making the rectangle long and thin:
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We can make it so long and flat that its height is very close to
zero—that makes its area very close to zero, too. You know that some-
where between a long, skinny rectangle and a tall, skinny rectangle
there are all sorts of larger areas possible with the same perimeter:
a 1 × 4 rectangle with an area of 5, a 2 × 3 rectangle with an area of
6, and so on. In fact, it turns out that a square, with the width and
height equal, will have the largest area you can make with a given
perimeter.

Here’s another relation between area and perimeter: if we dou-
ble the length of each side, we get twice the perimeter but more than
twice the area. Let’s go back to our 3 × 2 rectangle for an example. If
we doubled its side lengths, here’s what we’d get:

Many people get confused about that point, but a diagram can
help make things clearer:
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[Note: drawing not to scale.]



54 Dr. Math Introduces Geometry

For a rectangle, if I double the length of each side, I get four times
the area (but twice the perimeter).

—Dr. Math, The Math Forum

Dear Leon,

Strictly speaking, they’re not comparable. It’s sort of like asking
whether a second is larger than an inch. Think about it this way.
Suppose I have a square that is 1 foot on each side:

The area is 1 square foot, and the perimeter is 4 feet. So you’d think
that the perimeter is bigger, right?

Dear Dr. Math,

Can the area of a shape be larger than the
perimeter?

Yours truly,

Leon

Can Area
Be Larger
Than
Perimeter?



But here is the same square measured in different units:

Now the area is 144 square inches, and the perimeter is 48 inches. So
you’d think that the area is bigger, right?

But you’d think that one is larger or smaller than the other only if
you looked at the numbers and ignored the units. When you look at
the units, you see that the quantities can’t really be compared, so the
question of which is bigger doesn’t really make sense.

—Dr. Math, The Math Forum

Dear Lorraine,

Here’s one way to look at it, suggested by a problem someone sent
in recently. Let’s reverse the question and try to build a rectangle out
of twelve 1-inch squares (a fixed area), and we’ll see why we won’t
always get the same perimeter. If you add up the perimeters of each
small square, the total will be 48 inches (12 squares multiplied by 4
inches each). If I line up the squares in a row, only two or three sides
of each square will be part of the perimeter, while the other sides
will be shared with neighbors:
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Dear Dr. Math,

I don’t understand how two rectangles with
exactly the same perimeter can enclose dif-
ferent areas. Can you explain that to me?

Yours truly,

Lorraine

Areas 
versus
Perimeters
of 
Rectangles



If you count the square edges to find the perimeter, you’ll see that it’s
26 inches.

Now let’s stack the squares closer together, in two rows of six:

Count again: the perimeter is 16 inches.
Now let’s lump them even closer together (more squarely), as a 

3 × 4 rectangle:

Count again: the perimeter is 14 inches.
Do you see what’s happening? The more square the rectangle is,

the more edges the squares share, and the less they contribute to the
perimeter, so the shorter the perimeter will be. Let’s go back to that
1 × 12 rectangle:

Each of the 11 interior edges between two squares takes away 2
inches from the perimeter (one side of each square), so the perime-
ter of this rectangle is 48 – 22 = 26 inches. Since the height is 1 and
the width is 12, this is correct: 1 + 12 + 1 + 12 = 26 inches.

The 2 × 6 rectangle has 16 interior edges, because more of 
the squares are touching, so we subtract not 22 but 32 inches from 
the perimeter, which is 48 – 32 = 16 inches. Yes, this is the same as 
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2 + 6 + 2 + 6. Likewise the 3 × 4 rectangle has 17 interior edges, so the
perimeter is 48 – 34 = 14 inches, which is equal to 3 + 4 + 3 + 4.

The same sort of thing happens with three-dimensional shapes,
and this effect is important in such questions as how your body dis-
sipates heat: if we picture the squares as cells, then a flat shape will
let each cell be close to the surface and cool itself off, while a
rounder shape will force more cells into the interior, where they
won’t be part of the surface and won’t lose heat as easily. Lumpy
things have less of an outer surface for the same amount of interior.
(That’s why elephants have thin ears, to radiate more heat, and why
cactuses have thick stems, to retain more moisture.)

Let’s look at your problem, which asks the question the other way
around: how can the same perimeter enclose different areas? Look
at a 1 × 7 rectangle, still using the little single-unit boxes:

Calculate the area: 7 square inches. Now a 2 × 6 rectangle, which has
the same perimeter as the 1 × 7 rectangle:

That’s got a bigger area: 12 square inches. The number of edges of
small squares on the outside of the shape has stayed the same, and
the number of small squares actually in the shape has increased.

We could keep going this way, but I think you see that the basic
answer to your question is that the area measures the inside of a
shape and the perimeter measures the outside, and by changing the
dimensions of the shape, it’s possible to change both the area and
the perimeter. If you keep the area the same and change the dimen-
sions, the perimeter will change. If you keep the perimeter the same
and change the dimensions, the area will change.

Thanks for the question. It’s fun to think about this sort of thing!

—Dr. Math, The Math Forum
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Dear Leon,

I think your group might be confusing length with perimeter. For a
line to have perimeter, it would have to have thickness. Lines in
geometry have no thickness, so you can only measure along them,
not around them.

You can get very close to a thickness of zero with a rectangle,
though. If you got very close, the length of the rectangle would be
very close to 18. Then to go around such a rectangle, you’d need to
walk along a side almost 18 units long, turn a corner and walk
almost no units, turn a corner and walk back another nearly 18 units,
and turn another corner and finish the last length of nearly zero. That
sounds like very close to 36 units in perimeter to me.

—Dr. Math, The Math Forum

Dear Dr. Math,

Does a line have a perimeter? Here’s what I’m
thinking. In math class we were looking at rec-
tangles with a fixed perimeter of 36 centimeters
and a variable area. We were keeping track of
the numbers using a chart. I started thinking
that for a height of zero, I would need 18 at
the base, because that made sense when I 
looked at the chart. The other kids in my 
group said that I was wrong because a line of 
18 has only a perimeter of 18, and I would need
a line of 36 units to get a perimeter of 36
units. Can you help us understand how to think
about this?

Yours truly,

Leon

The
Perimeter
of a Line
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Dear Dr. Math,

We are reviewing area and perimeter. Our teacher
gave us a problem and told us to prove it true or
false. I know that the answer is false, but I need
help understanding and explaining why it’s wrong.

Here is the problem: We have a given square,
and we see that if we increase the perimeter, the
area increases as well in our new rectangle. Is
that always true? Give a thorough explanation and
clear examples.

Given square:

P = 12 feet and A = 9 square feet

(In my class, we use P for perimeter
and A for area.)

New rectangle:

P = 14 feet and A = 12 square feet

I do see that the theory that as
perimeter increases, the area
increases as well is not always
true,even though it works for the

given problem. In my example below, I have a rec-
tangle in which the perimeter increased, but the
area decreased, so the theory is wrong (or at
least not always right):

P = 14 feet and 
A = 6 square feet

I know how to do the math and figure out perime-
ter and area, but I don’t know how to explain why
it doesn’t work if one side of the rectangle is 1
foot, and why it did work for the given problem.

Sincerely,

Lorraine

Areas
versus
Perimeters
of 
Rectangles



Dear Lorraine,

You are correct that a rectangle with a perimeter greater than 12 (the
perimeter of the given square) does not necessarily have an area
greater than 9 (the area of the given square). When you are told to
disprove a statement, all you need to do is to provide a counterex-
ample—a case that satisfies the givens (a rectangle with a perime-
ter greater than 12) and does not fit the conclusion (an area greater
than 9). You have done this, so you have a thorough explanation with
a clear example.

You don’t need to explain why the statement is not true in any
deeper sense than “because here is an example in which it is not
true.” But I understand your desire to understand it on a deeper level.

If you have further questions
about this, please feel free to

ask me. “Why” questions
can lead in lots of different
directions, and only you
can tell me when we have
hit on an explanation of
the type that will satisfy
you. Of course, a true
mathematician will never
be completely satisfied.
There are always more
directions to explore.

—Dr. Math, The Math
Forum
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Dear Leon,

Has someone led you to believe that this would be possible? A
square with a perimeter of 16 feet has an area of 16 square feet:

Suppose we keep the same perimeter, but use another shape. To
do this, we would have to reduce the width by some amount, x, and
increase the length by the same amount:

Now the perimeter is still 16 feet, but the area is

A = (4 – x) (4 + x)
= 42 – x2

= 16 – x2

square feet, which is to say that any change we make—from a
square to a nonsquare rectangle—will result in a smaller area.

—Dr. Math, The Math Forum
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Dear Dr. Math,

I need to come up with a rectangle with an
area greater than 16 square feet and a
perimeter of 16 feet.

Sincerely,

Leon

Why a
Square
Maximizes
Area
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Dear Lorraine,

Let’s look at a smaller version with three rectangles on top and two
on the bottom. All the rectangles are identical in shape, so we can
label the diagram with their widths and heights. Can you fill in the
rest of the letters in this figure?

This figure tells us that 3 times the
width (w) of a single rectangle is equal to
2 times the height (h) of a single rectangle.
Do you see why? We know that the dia-
gram as a whole is a rectangle, so the top
and bottom edges are the same length.
And the top edge is made up of three w’s,
and the bottom edge is made up of two h’s,
meaning that

Dear Dr. Math,

I have a problem. I have a group of thir-
teen rectangles arranged into a larger rec-
tangle. I know the area, but I need to find
the perimeter. How do I do this? The rec-
tangles are arranged with eleven parallel
in one row and two that are sideways on the
bottom. The area I’m given is 1,144 square
units.

The rectangles are all equal in shape,
and I don’t know how to find the perimeter.

Sincerely,

Lorraine

Find the
Perimeter



What is the area of the whole thing? Again, the figure tells us
that the width of the whole thing is 3w, and the height of the whole
thing is (h + w).

Since the area of a rectangle is equal to the width multiplied by
the height,

area = 3w(h + w)

But we know that h = (3–2) w, so we can substitute that expression for
h in our equation for area:
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So if I know the area, I can find w by solving the area expression
for w; and if I know w, I can find h by using the equation relating h
and w.

Can you apply the same reasoning to your problem?

—Dr. Math, The Math Forum

Dear Lorraine,

The answer is pretty simple, but it can give you a lot to think about.
Since the area of a rectangle is the product of the lengths of the
sides, the sides are always factors of the area.

It’s easier to picture if you think of building a rectangle out of
objects—maybe little square blocks or maybe just arranging
squares in a rectangle. If I gave you a handful (or a roomful) of
squares and asked you to make a rectangle out of them, you would
have to decide what size rectangle you should build. Not all rectan-
gles would work. For example, if you had 14 small squares and tried
building a rectangle 5 squares across, you would find that you
didn’t have enough to make the third row:
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Dear Dr. Math,

I’m trying to figure out what a rectangle
and factors have in common. Can you help?

Sincerely,

Lorraine

Factors and
Rectangles



That’s because 5 is not a factor of 14. If you factor 14, you will find that
14 = 2 ⋅ 7 or 1 ⋅ 14, so the only rectangles you could make would be 
2 × 7 or 7 × 2, or 1 × 14 or 14 × 1.

The fun part comes when you have a number that you can factor
in more ways. For example, with 36 squares you could make all
these rectangles:

1 ⋅ 36

2 ⋅ 18

3 ⋅ 12

4 ⋅ 9

6 ⋅ 6

9 ⋅ 4

12 ⋅ 3

18 ⋅ 2

36 ⋅ 1
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Try playing with rectangles for a while. It can really help you get
a feel for how multiplication and factoring work!

—Dr. Math, The Math Forum

Dear Leon,

You use a different formula because it is a different problem. The
answer is different, so you need a different process to get the answer.
(And you may find that they are not so different after all!)

There is another way to explain this with a diagram. It helps 
to think of squares and rectangles, because if you think of right
triangles in pairs, you can rearrange them to make squares or
rectangles. And you already know how to find the area of squares
and rectangles.

Dear Dr. Math,

Why do you have to use a different formula
to get the area of a triangle than a 
rectangle or a square?

Yours truly,

Leon

Areas of
Triangles
versus
Areas of
Rectangles



2 1  2  3  4  5  6    

Because two identical right triangles put together along their
long sides make a rectangle or a square, that means half the area of
the square or rectangle is the area of the triangle. We write this as

where b is the base and h is the height.
When you are finding the areas of triangles that are not right tri-

angles, try thinking about creating right triangles and applying this
same idea. For example:

This triangle becomes . . . two right triangles

—Dr. Math, The Math Forum

Units of Area
When calculating area and perimeter, you’re dealing in units of
measurement. It’s important to keep the units straight in your head
while you work with them so that you don’t end up with the wrong
units at the end of the process. Sometimes they’re hard to tell apart.
Does 3 square meters mean (32)m or 3 m2? Which area is bigger: pi
meters squared or 10,000 pi centimeters squared? This section will
help you keep the units straight.
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A b h= ⋅
1

2



Dear Leon,

It’s written as 12 m2 but should be read as “12 square meters” instead
of “12 meters squared.” As you say, the latter sounds as if it means
(12 m)2, the square of 12 meters, rather than 12(m2), as it really is, 12
times 1 meter squared.

The fact is, however, that you will find both forms used. I think it
is generally agreed that “12 square meters” is better, in order to
avoid the problem you mentioned, but both are “correct.”

—Dr. Math, The Math Forum
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Dear Dr. Math,

If I have a square whose dimensions are 
5 m × 5 m, its area is read as 25 square
meters. But you state this can also be 
called 25 meters squared. Isn’t 25 meters
squared the same as 25 m × 25 m, which is 
625 square meters?

How do I write either of these down to
avoid confusion?

Sincerely,

Lorraine

Notation
for Meters
Squared
and Square
Meters

Dear Dr. Math,

I’m confused. My friend says that a rectan-
gle 3 meters by 4 meters equals 12 meters
squared. I say it is 12 square meters, and
that 12 meters squared would be a square
measuring 12 meters on each side (or a
total of 144 square meters). Who is right?

Yours truly,

Leon

Meters
Squared
versus
Square
Meters



Dear Lorraine,

When we say 25 square meters, what we write is

25 m2

which means

25(m2)

That is, following the conventional order of operations, we evaluate
the exponent first, so it applies only to the units. That’s different from
the square of 25 meters (25 m ⋅ 25 m), which would be written as

(25 m)2 = 252 m2

and means 252, or 625, square meters. Consider the expression

5 + 3x2

You don’t interpret that last term as (3x)2, right? Same thing here.
To avoid confusion, you have to be careful where you put the expo-

nent. If you put it on the quantity, it means to square the quantity, leav-
ing the units alone. If you put it on the units, it means to square the
units, leaving the quantity alone. If you want to square both, you have
to use parentheses to extend the scope of the exponent:

252 m = (25 ⋅ 25)(m) 25 m2 = (25)(m ⋅ m) (25 m)2 = (25 ⋅ 25)(m ⋅ m)
625 meters, a 25 square meters, 625 square meters, the
linear measure the area of a square area of a square 25 m

5 m on a side on a side

—Dr. Math, The Math Forum
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Dear Dr. Math,

How do I convert the number 47,224 square
miles to kilometers?

Sincerely,

Leon

Converting
to Square
Units
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Dear Leon,

Strictly speaking, you can’t. Square miles are a measure of area, and
kilometers are a measure of length.

Do you mean how can you convert square miles to square kilo-
meters? Let me show you how to do it with different units, and you
can apply the same reasoning to your own problem.

Suppose I have a square that is 2 inches on a side and therefore
4 square inches in area:

I know that there are 2.54 centimeters in an inch. So I can label my
figure this way:

So the area in centimeters is

(2.54 + 2.54)(2.54 + 2.54)
(2 ⋅ 2.54)(2 ⋅ 2.54)

If we look a little more closely, we can see what is going on:



So to get the length, I would multiply by a conversion factor. To use
a fictional example, let’s say I want to convert 21 blinches to ziglofs,
and I know that there are 17 blinches for every 35 ziglofs:

But to get the area, I have to multiply by the square of the
conversion factor—for example, for the same units:

There are 1.609 kilometers in a mile. Can you take it from here?

—Dr. Math, The Math Forum
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The equation for the
area of a square.

Using a conversion
factor, there are 2.54 cm
in 1 in. 

Multiplication is
commutative, so pull
everything out of the
parentheses and
rearrange it.

Multiply the (2 in)’s.

Multiply the other
fractions.

The in2’s cancel, so
when we multiply,
we’re left with cm2 for
our units.
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Converting Units
Suppose that you know the speed of a snail in inches/day and that someone wants

to know the snail’s pace in miles/hour. You can multiply the snail’s speed by any
fraction that is really 1. For example, 12 inches/1 foot is really just 1 because there
are 12 inches in a foot; 60 minutes/1 hour is really just 1 because there are 60
minutes in an hour. So suppose that the snail’s pace is 14 inches/day. To convert
this to miles/hour, I would multiply by a succession of fractions equivalent to 1:

If you write each fraction with a horizontal fraction line, you can see that all the
units cancel except the final ones in the answer. In other words, you can cancel units
just like you do factors when dealing with fractions.

14 in
1 day

1 ft
12 in

1 mi
5,280 ft

1 day
24 hr

 =  0.00000921 mi/ hr




























3 1  2  3  4  5  6    Areas and Perimeters of Parallelograms and Trapezoids
In the first section, we looked at finding the area and perimeter of
squares, rectangles, and triangles. In this section, we’ll look at find-
ing the area and perimeter of parallelograms and trapezoids. Do you
see from these figures how this section follows from the first one?



Dear Lorraine,

Perimeter isn’t that hard if you remember it is always the sum of the
lengths of all the sides of the figure. So in this case, you’d exclude
the 12 from your measurements (since it doesn’t measure an outside
edge of the figure but rather the distance across it), and add 13 twice
and 27 twice to get 80 yards for the perimeter.

Area is harder because you have a different formula for each
kind of figure. You need to be careful to use the right formula for the
figure and to know the meaning of each quantity in the formula.

In your example of the parallelogram, the first mistake you made
was using the formula for a trapezoid incorrectly. That formula is
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Dear Dr. Math,

I’m a little confused about perimeter and
area. I use addition to find the perimeter,
and I use multiplication to find the area
just the way my teacher taught me. I can do
rectangles and squares but not trapezoids,
triangles, and other funny-looking shapes.
We had to do this problem with a parallelo-
gram that was 27 yards across at the top
and bottom, 13 yards at the sides, and 12
yards inside the parallelogram. I came up
with 240 yards for the area, but the answer
was really 324 yards. Can you help?

Yours truly,

Lorraine

Finding 
the Area and
the Perimeter
of a 
Parallelogram

area of a trapezoid =  
top +  bottom

2
  height⋅



You must be sure that the top and bottom are the lengths of the par-
allel sides. You can actually use this formula for a parallelogram,
because a parallelogram is a special kind of trapezoid with the
same length for the top and bottom. But you used length and width
(bottom and side) instead of bottom and top.

The formula for a parallelogram is

area of a parallelogram = base ⋅ height

This formula works for rectangles and squares, too, because they are
special kinds of parallelograms. But you must be careful not to con-
fuse the length of a side with the height. For rectangles and squares,
these are the same, but they’re different for most parallelograms.

Here is a diagram of your parallelogram:

What you should have done is this: The base is 27 yards. I
assume that when you say “12 yards inside the parallelogram,” you
mean the height—the length of a line joining the top and bottom that
is perpendicular (at right angles) to both of them. Then using the
formula

area of a parallelogram = base ⋅ height
= 27 yd ⋅ 12 yd
= 324 yd2

Don’t forget that area is measured in square units, like square yards
(yd2), not just yards!

So once again, these are the main things to remember:

1. Use the right formula for the figure—know the definitions of
parallelogram, trapezoid, and other shapes.
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2. Know the definitions of the terms used in the formulas (base,
height, etc.) so that you use the right number for each.

And one more thing related to the second item: don’t be confused
when a figure has more numbers than you need! You didn’t need the
length of the short side to figure out the area of the parallelogram;
that is only needed for the perimeter (unless you’re using it to figure
out the height, but that’s another problem).

—Dr. Math, The Math Forum

Dear Leon,

These are largely just different terms for the same thing, but they are
named differently to remind you of some important details.

We usually use length and width to describe the dimensions of
rectangles. (Most of the time, the longer side is l and the shorter side
is w, but it really doesn’t matter as long as you’re consistent within
any single problem.)
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Dear Dr. Math,

What is the difference between length times
width and base times height? They look the
same to me, except the figure being meas-
ured is rotated.

Why do you use two different formulas to
measure a parallelogram and a square?

Yours truly,

Leon

Base or
Width?



The area is the product of these, whichever way we name them.
Base and height are the terms we usually use for triangles and

parallelograms (and trapezoids).
The important thing to remember is that the height is no longer

a side of the shape, but the base is:

The height is the distance between the top and the bottom, which is
measured perpendicular to them. The base is the length of the bot-
tom. If we had said “width,” you might think it meant the greatest
side-to-side distance, which is not the base:

But for a rectangle (which, after all, is a kind of parallelogram),
there is no confusion over the meaning of width. It’s the same as the
base. So you can say that the area is the base times the height or the
width times the height.

That’s why we use the words we do. Does that help? If you think
about it, you will realize that even if you learn only the formula 
for the parallelogram, you can still find the area of rectangles 
and squares as well—three for the price of one. Realizing that is a
big help!

—Dr. Math, The Math Forum
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Dear Lorraine,

Each of these figures has a pair of parallel sides (the parallelogram
has two such pairs). Pick one of these sides and call it the base; then
the height is the distance between the line that contains the base
and the line that contains the side parallel to it.

The distance between two parallel lines is the length of a line
segment with an endpoint on each of the lines that is perpendicular
to both lines. Any line in the plane that is perpendicular to one of the
lines will be perpendicular to the other, and the length will be the
same wherever the segment is located—the distance between par-
allel lines is constant along their length.

It may be that within the shape you have, no line segment can be
drawn perpendicular to the base such that one end lies on the base
and the other lies on the parallel side. This is not a problem; we meas-
ure the distance between the two lines, not the distance between the
segments of these lines that are the sides of the figure. So you can con-
tinue one of the parallel line segments until you have two points that
can be connected to make a perpendicular line, like this:
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Dear Dr. Math,

Could you explain the concept of height
with regard to a parallelogram or a 
trapezoid?

Yours truly,

Lorraine

The Height of a 
Parallelogram
or a Trapezoid



78 Dr. Math Introduces Geometry

The area of a parallelogram is the length of the base times the
height. The area of a trapezoid is the average of the lengths of the
base and the side parallel to it times the height:

where b is the base, h is the height, and a is the side parallel to the
base.

In a parallelogram, you could choose any of the sides and call it
the base, as long as you define the height perpendicular to this
base; the area will be the same in any case:

area = b1 ⋅ h1 = b2 ⋅ h2

—Dr. Math, The Math Forum



Dear Leon,

Okay. Draw a trapezoid—any old trapezoid, as long as it isn’t a par-
allelogram. It has two parallel sides of different lengths and two
nonparallel sides of different lengths (unless it’s an isosceles trape-
zoid, and then these two sides are the same length). Just so we can
talk about this trapezoid, draw the two parallel lines horizontally
with the longer side on the bottom.

Now label the upper left corner A, the upper right corner B, the
lower right C, and the lower left D. Now we have a trapezoid we can
talk about.

In order to find the area of this trapezoid, we have to know a few
things:

The length of the line segment AB

The length of the line segment DC

The height of the trapezoid, or the angles of the corners with
the lengths of the sides

Look at your trapezoid again, and draw a line from A perpendi-
cular to DC. Call the point where the new line hits DC point E. Then
draw another line from B perpendicular to DC, and call that point F.
Still with me? You should have a rectangle and two triangles, like
this:
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Dear Dr. Math,

Our math teacher assigned a project, and we
have to derive the area of a trapezoid—that
is, not simply look up the formula in our
math book. Can you help me get started?

Yours truly,

Leon

The Area of
a Trapezoid
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Since we know that AB and DC are parallel line segments, and
we drew AE and BF perpendicular to DC, we know several things:

AB = EF (because ABEF is a rectangle).

DAE is a right triangle (because angle AED is a right angle).

BCF is a right triangle (because angle BFC is a right angle).

So the area of the trapezoid is equal to the area
of the rectangle plus the area of each of the
triangles.

Let’s take a trapezoid where AB = 5, DC = 9,
the height (which is AE and BF) = 3, and let’s say
it’s an isosceles trapezoid where AD = BC. You
might want to label your trapezoid figure so that
you can follow along:

We already know that AB = EF, because it’s a rectangle, so they’re
both 5. And we know that the height is 3, because that was given. So
the area of the rectangle is the base times the height: 5 ⋅ 3 = 15.

Since this is an isosceles trapezoid, we know that the two trian-
gles are exactly the same size and have the same proportions, which
means they are congruent triangles. (If you cut two congruent
triangles out of the paper, turn them around the right way, and put
them on top of each other, they are exactly the same.) So DE = FC.

WAIT,  WAIT!
What if it’s not 

isosceles?
Just check out the next

answer!



Since we know EF = 5 (because AB = 5) and DC = 9, DE and FC
both have to be half of DC – EF, so we know that DE and FC each have
to be 2.

The area of any right triangle is one-half of its base times its
height. We know the base is 2 and the height is 3, so the area of one
of these triangles is 1–2 ⋅ 2 ⋅ 3 = 3. And we have two of these triangles,
so the total area of this trapezoid is the area of the rectangle plus the
areas of the two triangles, or 15 + 3 + 3 = 21.

If I were going to make a generic formula for an isosceles trape-
zoid, I’d do it this way:

So, for example:

If you check my work here and plug in AE = 3, AB = 5, and DC = 9,
do you still get 21?

—Dr. Math, The Math Forum
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Dear Dr. Math,

We were told that the area of a trapezoid is
half the sum of the parallel sides multiplied
by the height. How can I visually prove this
formula?

I know that with a parallelogram you can
cut off the triangle piece at one end, attach
it at the other end, and you have a rectangle
again, so that proves why the formula area =
base ⋅ height works. Is there a similar way
to prove why the trapezoid formula works?

Yours truly,

Lorraine

Trapezoids:
Visual
Proof of
the Area
Formula



Dear Lorraine,

Consider this trapezoid, with bases of a and b and a height of h:

If we connect the midpoints of the legs of the trapezoid, we get a seg-
ment that has a length that’s exactly between the length of the top
(a) and the bottom (b)—it’s the average of the other two lengths. So
its length is a + b—2 . We can also construct perpendicular lines from
those midpoints to the bottom to construct small right triangles, as
in this figure:

If we rotate those right triangles up around the midpoints until they
hit the side of the trapezoid, we end up with a rectangle.
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R   

And if you look carefully, you’ll see that the length of the rectangle
is  a + b—2 and the height is h, so the area is

which is the same as the formula we’ve learned for the area of a
trapezoid.

—Dr. Math, The Math Forum

esources on the Web
Learn more about area and perimeter at these sites:

Math Forum: An Informal Investigation of Area
mathforum.org/workshops/sum98/participants/muenster/
Step-by-step activity exploring the area of an irregular shape.

Math Forum: The Area of a Parallelogram
mathforum.org/te/exchange/hosted/basden/llgramarea.html
Students learn to calculate the area of a parallelogram.

Math Forum: What Is Area?
mathforum.org/alejandre/frisbie/student.one.inch.tiles.html
Collaborative group activity comparing area and perimeter using
Hands-On Math software by Ventura Educational Systems, but the
ideas could be adapted to use with other software or a Java applet.

Shodor Organization: Project Interactivate: Area Explorer
shodor.org/interactivate/activities/perm/
Students are shown shapes on a grid after setting the perimeter and
are asked to calculate the areas of the shapes.

area of rectangle =  
a b

h
+

⋅
2



Shodor Organization: Project Interactivate: Perimeter Explorer
shodor.org/interactivate/activities/permarea/
Students are shown shapes on a grid after setting the area and are
asked to calculate the perimeters of the shapes.

Shodor Organization: Project Interactivate: Shape Explorer
shodor.org/interactivate/activities/perimeter/
Students are shown shapes on a grid and are asked to calculate the
areas and the perimeters of the shapes.

Shodor Organization: Project Interactivate: Triangle Explorer
shodor.org/interactivate/activities/triangle/
Students learn about the areas of triangles and about the Cartesian
coordinate system through experimenting with triangles drawn on
a grid.
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Circles get a section all to themselves in this book. That’s because

circles and polygons have a very important difference: a polygon has

multiple straight sides, and a circle is a single closed curve. The more

sides you have in your polygon, the more you can make it look like a

circle, but the sides are still straight. You can’t add sides to a circle or

take them away without making something that isn’t a circle any-

87

Circles and PiCircles and PiCircles and Pi
2 

PART3 
4 
5 



88 Dr. Math Introduces Geometry

1  1  2  3  4  5  6    

more. We generally use different formulas for measuring circles and polygons,
so we’ll introduce you to those in this section. You’ll need to know about the spe-
cial number, pi, which we’ll also cover here.

In this part, Dr. Math explains

• pi, circle parts, and circle measurements

Pi, Circle Parts, and Circle Measurements
Perhaps the easiest way to understand circles is to construct one.
Define any two points, and choose one of them to be the center. The
distance between the two points is the radius. The circle is made up
of every point whose distance from the center is equal to the radius.
To draw one using a compass, set your compass to the radius you
chose. Hold the point of the compass on the center while you move
the pencil end around it.

If we choose any two points on a circle, we can connect them with
a line segment called a chord. If a chord passes through the center
of the circle, we give it a special name: diameter. A diameter is a
type of chord, in the same way that a square is a type of rectangle.

Note that we use the words “radius” and “diameter” in two dif-
ferent ways. A line segment from the center of a circle to any point on
the circle is a radius of the circle (there are many such segments; they
are objects), and the length of such a segment
is the radius of the circle (there is only
one such distance; it is a measure-
ment). Similarly, a chord that passes
through the center of a circle is a
diameter of the circle, and the
length of such a chord is the diam-
eter of the circle.

We found in an earlier section
that two important measurements
for polygons are the perimeter and
the area. With circles, we still talk



about area, but instead of perimeter, we now
talk about circumference. The circumference
of a circle is the distance around it. As with
perimeter, circumference is measured in 
linear units (inches, feet, etc.). The area of
the circle is the number of square units
needed to cover its surface. Area is still
measured in square units: square inches,
square meters, and so on.
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Dear Lorraine,

The circumference of a circle is the distance around it. There is a
way to calculate the circumference if you know, or can figure out,
another geometric length called the radius.

Here’s a diagram of a circle:

Do you see the dot in the middle of the circle? It’s the center of the cir-
cle. If you make a line from the center to a point on the circle, that
line is going to have the same length no matter what point on the cir-
cle you choose. Those special lines are called “radii” (pronounce it
as “RAY-dee-eye”). If you’re only talking about one of these lines, it
is called a “radius.” (Notice that there are an infinite number of these
radii, but their lengths are the same.)

There is another special line that is associated with the circle,
and mathematicians have called it the “diameter.” It is simply a line

Dear Dr. Math,

Would you be able to tell me how to work
out the circumference of a circle? I’m not
sure what it is.

Yours truly,

Lorraine

Finding the
Circumfer-
ence of a
Circle



segment from one point on the circle to another point on the circle
that also passes through the center of the circle. It looks like this:

If you look carefully, you can see that the diameter is one radius from
the center to a point on the circle, and another radius from the cen-
ter to the opposite point on the circle. So the length of the diameter
is twice the length of the radius.

Now, what about the circumference? Well, that’s just the curved
line around the circle. If you cut your circle at one point and
straighten it so that it becomes a straight line, the length of that line
is going to be the length of the circumference.

It turns out that circles have a very curious property. If you take
the diameter of any circle (no matter what size), the number of diam-
eters that fit in the circumference will be the same for any circle (try
to verify it yourself with two pieces of string). Actually the diameter
will fit about three times into the circumference but not exactly.
There will be a small part of the circumference left.
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Mathematically speaking, we say that the ratio of the circumfer-
ence to the diameter is constant (the same number) for all circles.
This constant is very famous in mathematics, and it appears, some-
times unexpectedly, in a lot of theorems and equations. Even the
Egyptians knew about it thousands of years ago (they said it was
22/7, although we know it’s a little less than that). The Greeks also
knew about this constant and calculated it to better accuracy using
geometrical methods. Mathematicians call this constant pi (pro-
nounced “pie”), after the Greek letter π, equivalent to our p.

Pi is a very interesting number that people have studied exten-
sively. It is an irrational number. Essentially, that means we cannot
write it as a ratio (we can’t get pi by dividing two integers). So we
will never know the exact value of pi—we will always be off the true
value. We can only get increasingly accurate estimates of what pi
is, and people have written programs and found pi to millions of dec-
imal places on the most powerful and fastest computers. (For most
purposes, we only need a few decimal places.)

How does all of this help us calculate the circumference of a cir-
cle? You know that the circumference divided by the diameter is the
number pi for any circle:

π = C
d
—

or

C = π ⋅ d

So if you know the diameter of the circle, you can get the circumfer-
ence just by multiplying by pi (which is approximately 3.14159 . . .).



Most books give the formula in terms of the radius. Remember
that

d = 2r

so

C = π(2r)
= 2πr

—Dr. Math, The Math Forum

Dear Leon,

You’re asking some of the same questions that people have asked for
thousands of years. They’re very interesting questions. A long time
ago, the Greeks wondered what pi was, and a lot of people since
then have tried to find out. People have claimed that they’ve dis-
covered that pi is 22 divided by 7.

Pi is the ratio of the circumference of a circle to its diameter. That
is, if you have a string the length of the circumference, pi is how
many times it will cover the diameter. It’s a little bit more than 3. But
pi has all sorts of other strange properties. It’s a number that you can
never write completely. (That’s why we just say “pi” instead of writ-
ing it down.) If you start to write pi, it looks like 3.141592653589 . . . ,
but that’s only the beginning of it. It goes on forever.

But what’s the definition of a circle? Well, here’s one interesting
way to think of it: put a thumbtack or a nail in a board and tie a string
to it. Tie the other end of the string to a pencil. Now pull the pencil
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Dear Dr. Math,

I am learning about circles, such as chords
and radii. I would like to know the defini-
tion of a circle. I also want to know what
pi means.

Yours truly,

Leon

Explorations
of the Circle
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as far away from the nail as you can, and put the point on the board.
The string will stop you from pulling too far. Now if you move the
pencil while keeping the string pulled tight, you can move it around
the nail to draw a circle.

If you think of drawing a circle this way, you will realize that the
pencil is always a certain distance from the nail—the distance is the
length of the string. So you could say that a circle is made up of all
the points that are the same distance from the center point.

If you draw a point on a piece of paper (the center point), then use
your ruler to draw other points (whichever ones you like) that are
exactly 3 centimeters from the center point, you’ll find that you start
to get a circle once you’ve drawn lots of these points. If you could
draw enough points, you could fill up this whole circle.

Here’s something to try once you’ve made a circle with a nail and
string: try putting two nails in a board or a tabletop, then tie a string
in a loop around the two nails. Put your pencil in the string and pull
it tight (so that you have a triangle made of two nails and a pencil
in a loop of string). Now try moving the pencil while keeping the
string tight. What shape did you draw?

—Dr. Math, The Math Forum



Dear Lorraine,

Just about the most famous math formula is known as “pie are
square,” or seriously,

The area of a circle is pi times the square of the radius
length, or A = πr2

You know that the area is 30 square inches, so 30 = πr2. The
unknown in this equation is the length r.

Divide both sides of the equation by pi to get r2 = 30–π , or about
30/3.1416, which is about 9.55. Then r is the square root of this, which
comes out to approximately 3.09 inches.

—Dr. Math, The Math Forum

Dear Leon,

“Circumference” is just a special term for the perimeter when applied
to circles. There is no reason not to allow the word “perimeter” to be

Circles and Pi 95

Dear Dr. Math,

If a pizza has an area of 30 inches square,
what is its radius? What are the steps in
solving this problem?

Yours truly,

Lorraine

The Radius
of a Pizza

Dear Dr. Math,

Technically speaking, can the term “perime-
ter” apply to a circle in a mathematical
context?

Yours truly,

Leon

Circumfer-
ence versus
Perimeter
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applied to circles, as part of a discussion that includes both circles
and other shapes. And we’re not really sure why one term stuck to the
circle and the other term didn’t. “Perimeter” comes from Greek words
meaning “to measure around,” and “circumference” comes from
Latin words meaning “to carry around.” The Greeks even used the
word that became our word “periphery” to mean the perimeter of a
circle. In some dictionaries, the definition of circumference is actu-
ally “the perimeter of a circle.” So perimeter can apply to any figure,
but we usually use circumference for circles.

—Dr. Math, The Math Forum

Dear Lorraine,

I’m not sure whether you’re asking for the formula for the area of a
circle or for an explanation of how it works. I’ll give you both.

The formula is

A = πr2

which means the area is pi (3.14159 . . .) times the square of the
radius. To use this formula, measure the radius of the circle (which
is half the diameter), square it (multiply it by itself), then multiply the
result by π.

There’s an interesting way to see why this formula is true, which
may help you remember it. (Though the easiest way to remember the
formula is the old joke: why do they say “pie are square” when pies
are round?)

Picture a circle as a slice of lemon with lots of sections (I’ll only
show six sections, but you should imagine as many as possible):

Dear Dr. Math,

I haven’t figured any of it out, but I want
to know how to get the area of a circle.
Please help.

Yours truly,

Lorraine

Finding the
Area of a
Circle



Now cut it along a radius and unroll it:

All those sections (technically called sectors of the circle) are
close enough to triangles (if you make enough of them) that we can
use the triangle formula to figure out their area. Each triangle has
an area that can be found using the formula

Well, what part of the circle makes up the base of the triangles?
The circumference, all spread out. What part of the circle makes up
the height of each triangle? The radius is the height. That makes our
area formula for one triangle

But wait—there are six triangles, and you have to add them all
together to get their total area, right? Well, if you divide the circum-
ference by 6 to get the part that applies to each triangle, then you
multiply it by 6 to get the total number of triangles, you’re back
where you started. So since you know the whole length of the cir-
cumference, you can use the formula just once to figure out the area
of all six triangles, like this:

A C r=






⋅
1

2

1

6

A b h= ⋅
1

2
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You should know that the circumference is pi times the diameter, or

C = πd = π ⋅ 2r = 2πr

so the area is just

A r r r= π ⋅ = π
1

2
2 2( )

A C r

C r

C r

C r

C r
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In other words, the area of a circle is just the area of a triangle
whose base is the circumference of the circle and whose height is
the radius of the circle.

—Dr. Math, The Math Forum
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Dear Dr. Math,

I understand that pi is the ratio of a cir-
cle’s circumference to its diameter. Since
pi is irrational, it implies that at the
least either the circumference or the diame-
ter must be irrational. I don’t understand
how that is possible.

If I had a piece of string 1 inch long
and formed it into a circle, couldn’t I
theoretically measure the diameter of that
circle? How could that measurement be irra-
tional? Just because I can’t measure it
accurately, it doesn’t mean that the true
length of it is some never-ending decimal.

If there were some reason that the meas-
urement could never be accurate enough, then
perhaps I would understand better. However,
I don’t see how one length of something can
be measured as an exact number and another
cannot. There are hypotenuses of right tri-
angles that are rational numbers, so if they
can be measured, I don’t see why some others
cannot, except for the fact that some for-
mula says that they can’t.

In my mind, I know that these lengths are
indeed finite, so the decimal must end.

So that’s my question, if you understand
it. Thanks.

Yours truly,

Leon

Accuracy in
Measure-
ment



Dear Leon,

Your observation is very smart. Either the circumference or the diam-
eter is not rational. If you have a piece of string exactly 1 inch long
and you make it into a perfect circle, the diameter of that circle will
be an irrational value. You could try to measure it, but no matter how
accurately you did measure it, it would still not be quite accurate
enough. So you can never know exactly what the diameter is just by
measuring.

If you took that string and made a diameter with it, the circum-
ference would be irrational, and you would never be able to meas-
ure the circumference accurately enough. Whatever you measured
would be close but not exact.

It’s the same problem with a right-angled triangle with short
sides exactly 1 inch long:

The long side is an irrational number. You can’t find out what it is by
measuring. You can get close, but it’s still not exact.

The only way to calculate the exact length of these things is with
algebra. Nothing can be measured perfectly accurately. Some things
can be measured accurately enough, but that still isn’t perfectly
accurate.

For example, say we have a piece of string that we’ve been told
is exactly 1 inch long (if you are a centimeter person, then substitute
centimeter for inch). We want to measure this piece of string. Our
ruler has inches (or centimeters) on it, and when we hold the string
up, it looks close to 1, but is it exactly 1 or is it 1.0000000000000000001?

Well, to measure 1.0000000000000000001, we need a ruler with
markings that are very close together. But let’s say we can measure
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using a microscope and a very detailed ruler, and we find it isn’t
1.0000000000000000001. Now the question is whether it is exactly 1 or
actually 1.000000000000000000000000000001—and how are we going
to measure that?

See? No matter how accurately we measure, the actual value
might not be exactly the value the ruler shows us. That is because
rulers don’t have an infinite amount of accuracy. No ruler does.

So it doesn’t matter if something is exactly 1 or if it is exactly pi,
because we can’t measure either one of them with enough exactness
to be sure. The numbers 1 and pi both have an infinite number of
decimal places (it’s just that they are all zero in the case of 1), and
there is no way to measure to an infinite accuracy.

Any measurement we make is an approximation to the real
value. It might be a very good approximation and really, really close,
but it will never be exact. That’s why algebra was invented. If we
can’t measure exactly how big something is, then we must calculate
the exact size some other way. And that’s how we know pi is irra-
tional—not because we measured it and found out it had an infinite
number of decimal points, but because algebra says that it must be
like that. If we could measure something perfectly, we would find
that it is the exact number 1 or the exact number pi, but in reality we
can’t measure things that accurately.

Let’s forget the circle for the moment and look at the hypotenuse
of a right triangle or specifically the diagonal of a square.

Length measurements depend on the units by which they’re
measured. Think of it this way: we measure lengths as ratios of seg-
ments, so the length of a side of our square in inches is the ratio of
its length to that of a 1-inch segment. So, a given segment might
have a rational length or an irrational length, depending on what
unit you use to measure it with.

Take that square, for example. If we use the length of a side as
our unit, then it is a unit square, and of course its sides have a length
of 1. But the diagonal is the square root of 2, which is irrational. If
instead we choose to use the diagonal as the unit, then the diagonal
would have a rational length, and the sides would be irrational.

So line segments in themselves are not rational or irrational.
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Rather, two line segments may be “incommensurable,” meaning
that the ratio of their lengths is irrational. This idea goes back to the
ancient Greeks, who at first assumed that in any figure all the seg-
ments would have whole-number lengths (they only knew about
whole numbers or at least only trusted those numbers) if they chose
a small enough unit. When it was discovered that the diagonal of a
square was incommensurable with the side—meaning that it could
not be measured as a whole number of the same unit, because the
ratio was not a fraction—it ruined a lot of their perfectly good proofs,
and they had to start over.

The fact is, the numbers we talk about in math are not something
we can ever measure. We can’t get enough digits of a decimal to tell

whether it is rational; and if we did meas-
ure it accurately enough, we would find it
is composed of atoms and doesn’t have a
definite end, anyway. It’s only in the ideal
world of Euclidean geometry that we can
take some segment as our unit and meas-
ure everything else exactly enough to
know whether it is rational. Irrational
numbers are irrelevant to the real world.

—Dr. Math, The Math Forum

GREEK PI
Mathematicians chose pi as the

letter to represent the number
3.141592 . . . , rather than some
other Greek letter like alpha or
omega, because it’s pi as in
perimeter—the letter pi (π ) in
Greek is like our letter p.

Dear Dr. Math,

I’m immensely curious about pi. Does it
ever turn into a pattern of zeros and ones,
like a computer code?

Yours truly,

Lorraine

Pi Patterns



Dear Lorraine,

What an interesting question! The answer is that no one knows.
Millions and millions of digits of pi have been calculated using
supercomputers. The digits look random, with about the same num-
ber of zeros and ones and twos and threes and so on spread through-
out. Some modern mathematicians suspect that this pattern
continues to infinity, which means it will never become a sequence
of just ones and zeros or any other digits.

No one really knows, however. The only thing that we know for
certain is that pi is irrational: its decimal will not terminate or begin
repeating.

If you are interested, you might try to look in some math books in
your library. Whole books have been written about pi (a good one is
A History of Pi by Petr Beckman), and lots of books have chapters
about pi, so you might want to start with one of them.

One more thing. I don’t know if you have learned about other
number systems. Since you are interested in computer codes, per-
haps you know that computer scientists like to write numbers in 
the binary number system, which uses only the digits 1 and 0 to 
write down every number. For example, the number 13 can be
written as 1101 in binary and the fraction 1–2 can be written as the
binary decimal number 0.1.

In binary, everything is written with just ones and zeros. So if 
pi were written in binary, it would appear to have just ones and 
zeros also.

—Dr. Math, The Math Forum
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BUFFON’S NEEDLE EXPERIMENT
If you throw n needles, each of which is length 1, at a floor with horizontal

stripes every 1 unit, the ratio of needles that cross a stripe to the total number of
needles will approach 2/π as you have more and more needles. This can be a fun
classroom experiment.
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R   esources on the Web
Learn more about circles at these sites:

Math Forum: Designs with Circles—Suzanne Alejandre
mathforum.org/alejandre/circles.html
Students can read about circles in Islamic cultures and explore the
geometry involved in circle designs.

Math Forum: The Derivation of Pi
mathforum.org/te/exchange/hosted/basden/pi_3_14159265358.html
Students use real-world objects to understand the concept of a con-
stant such as pi.

Math Forum: Pi Day Songs
mathforum.org/te/exchange/hosted/morehouse/songs.pi.html
Songs to sing as part of a Pi Day celebration.

Math Forum: The Pi Trivia Quiz
mathforum.org/te/exchange/hosted/morehouse/trivia.pi.html
Test your trivia knowledge of pi.

Math Forum: The Area of a Circle
mathforum.org/te/exchange/hosted/basden/circle_area/circle_area.
html
Students derive the formula for the area of a circle.

Shodor Organization: Project Interactivate: Buffon’s Needle
shodor.org/interactivate/activities/buffon/
This activity allows the user to run a simulation of dropping a nee-
dle on a lined sheet of paper and determining the probability of the
needle crossing one of the lines.



We’ve looked a lot so far at one- and two-dimensional objects. In

this part we’ll look at three-dimensional objects, or solids. Do you

remember how it was useful to know something about lines in order

to work with polygons and circles? Well, it’s useful to know things

about polygons and circles in order to work with three-dimensional

objects. They’re all made using two-dimensional figures, after all:

the square can tell you something about the cube, or the square

prism; the circle helps you figure out the sphere, the cylinder, and

even the cone; the triangle is useful for the tetrahedron and other
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Platonic solids and pyramids. Don’t know what Platonic solids are? We’ll
introduce you to them in this section!

In this part, Dr. Math explains

• polyhedra

• Platonic solids

• surface area

• volume

• nets of solids

Polyhedra
“Polyhedra” is the plural of “polyhedron.” The root “poly” is from the
Greek word for “many” (which you might remember from “polyno-
mial”). “Hedron” means “face.” Compare this with the word “poly-
gon”: “gon” is from the Greek word “gonu,” which means “angle.” So
a polygon is a figure with many angles, and a polyhedron is a fig-
ure with many faces. Knowing where the words come from can help
you remember what they mean. In this section, we’ll look at the
many-faced polyhedra.

Dear Leon,

The objects you’ve asked about are solids, not plane figures. The
ending “-hedron” tells you that these are three-dimensional shapes
that have faces rather than sides like a triangle or a square. They
have not only length and width but also depth.

Dear Dr. Math,

I know what a polygon is, but now I’ve
heard the word “polyhedron.” What is it?

Yours truly,

Leon

What Is a
Polyhedron?



The other parts of a polyhedron are called edges—where the
faces meet—and vertices—corners where angles of the faces coin-
cide (the things that would hurt if you sat on them).

The prefix of each word tells you something about the solid. A
cube, for example, has six faces. The other name for the cube is the
hexahedron, because the prefix “hexa-” means “six.” An icosahe-
dron has twenty triangular faces. The prefix “icosa-” is from the
Greek word “eikosi,” meaning “twenty.”

These two polyhedra (plural of “polyhedron”) are special
because they are two of the five regular polyhedra, the simplest of
which is the tetrahedron. A regular polyhedron is a solid having
faces (surfaces) in the shape of a regular polygon (all the faces are
the same polygon) and the same number of faces meeting at each
vertex. The others are the cube (with six square faces, as you know),
the octahedron (with eight triangular faces), and the dodecahedron
(with twelve faces that are regular pentagons).

When are polyhedra not regular? When their faces are not all
alike, or when their faces are alike but not regular. For example,
semiregular polyhedra are made up of two different types of regu-
lar polygons. Prisms are a special type of polyhedra that look like
you’ve pressed them from a cookie press or dough squirter: they
have two matching faces at opposite ends, and the faces in between
are parallelograms formed by connecting the corresponding parts of
the matching faces.

—Dr. Math, The Math Forum
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Dear Dr. Math,

I would like to know how polyhedra are clas-
sified and which figures can be used for the
faces. I would also like to see the theorem
relating the faces, edges, and vertices.

Yours truly,

Lorraine

Polyhedra:
Classifica-
tion and
Euler’s
Formula



Dear Lorraine,

The classification of polyhedra is one of the neatest results of early
mathematicians. The simplest classification is that of the regular
polyhedra. A regular polyhedron has the following three properties:

1. Every face is a regular polygon.

2. Every face is congruent to every other face.

3. Every vertex has the same number of faces around it.

There are five regular polyhedra:

1. The tetrahedron, a triangular pyramid, possesses four vertices,
six edges, and four faces.

2. The cube, or hexahedron, which you probably know well, has
six faces, twelve edges, and eight vertices.

3. The octahedron has eight triangular faces, twelve edges, and
six vertices, and looks like two square-based pyramids con-
nected at their bases.

4. The dodecahedron has twelve pentagonal faces, thirty edges,
and twenty vertices.

5. The icosahedron has twenty triangular faces, thirty edges, and
twelve vertices.

Tetrahedron Cube Octahedron Dodecahedron Icosahedron
v = 4 v = 8 v = 6 v = 20 v = 12
e = 6 e = 12 e = 12 e = 30 e = 30
f = 4 f = 6 f = 8 f = 12 f = 20

Nonregular polyhedra are also categorized and classified—for
example, there are thirteen Archimedean, or semiregular, polyhedra.
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These are made of two or more different types of regular polygons,
all arranged in the same sequence around each vertex. So you might
have a pentagon, a square, a triangle, and a square around each
vertex, in that order. There aren’t any vertices where the order would
be pentagon, triangle, triangle, square.

There is also an interesting relationship among the number of
faces (f ), edges (e), and vertices (v) of a polyhedron. The mathemati-
cian Leonard Euler discovered that in every polyhedron,

f – e + v = 2

For example, in a cube, f = 6, e = 12, and v = 8, and 6 – 12 + 8 = 2.

—Dr. Math, The Math Forum

Dear Leon,

What an odd question. We generally use these terms in different
settings.

A cube on its own has six faces. Here we’re not
picturing it set on a table but just sort of floating in
space so that all six faces are equal, and we don’t
think of any of them as special.

When we are talking about how to calculate the
area or the volume, we usually think of one face as
the bottom and call it the base, as if we were setting it down on a
table to measure it. The top may be seen as the other base, since the
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Dear Dr. Math,

In math class we are learning about polyhe-
dra, and I can’t figure out the difference
between a base and a face on the shapes we
are learning. What is the difference? How
many bases does a cube have, and how many
faces does it have?

Yours truly,

Leon

Bases and
Faces



two sides are identical, and the other faces are the sides. So when
you set the cube down, it has one base (or two if you prefer) and four
sides.

It really doesn’t make any difference which face you call the
base when you talk about a cube, because the faces are all the
same. But for, say, a box (a prism like the one below), you have three
different lengths (length, width, and height), and by choosing a base,
you are deciding which two lengths to use to find the area of the
base, and which length to call the height.

You can choose any face to be the base, and you will get the same
answers. Some figures don’t have a top: think of a cylinder on its side
or a pyramid.

—Dr. Math, The Math Forum
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Dear Dr. Math,

How many edges does a cube have? My dad
says that there are six edges on a cube,
but I think there are twelve edges. I know
that a cube has six sides, but edges and
sides are not the same.

Yours truly,

Lorraine

Cube Edges



Dear Lorraine,

There are eight vertices and six faces on a cube, and there are
twelve edges, or lines, connecting one vertex to another. We don’t
use “side” in relation to cubes, because it can be confusing. (Do we
mean the side of a face, which would be an edge, or the side of the
whole cube, which might be a face or an edge?). Faces are the two-
dimensional squares that make up the cube, edges are where one
side of a square meets another along a line, and vertices (plural of
the singular vertex) are the places where the corners of the squares
meet one another—they’re points.

There are eight vertices because you have one square on the bot-
tom and another square above it, and you connect the two squares
with edges to form a cube. Since there are four corners on each
square and no corners on the edges connecting them, that makes
eight vertices. The bottom and top squares both have four edges, so
to connect the squares you must add four more, one at each of the
corners. This makes twelve edges in total.

The top and bottom squares make two faces, and when you add
the four new lines, you add four more faces, for a total of six faces.

It is often hard to see these problems in your mind. Whenever I
have trouble visualizing a three-dimensional object, I find that the
best thing I can do is grab some clay and make the object so that I
can examine it.

So a good way to solve your problem is to find a box (like a shoe-
box or a cereal box, which is a stretched cube), take a marker pen,
and number each of the edges. The beauty of this is that you don’t
just convince yourself that a box (like a cube) has twelve edges; you
can also show this box to your father and convince him, too.

—Dr. Math, The Math Forum
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The Platonic solids are named after Plato, an early Greek mathe-
matician (428–348 B.C.). In his Timaeus (a dialogue between Socrates
and Critias), there is a mathematical construction of the elements
(earth, fire, air, and water), in which the cube, tetrahedron, octahe-
dron, and icosahedron are given as the shapes of the atoms of earth,
fire, air, and water. The fifth Platonic solid, the dodecahedron, is
Plato’s model for the whole universe. Today we still call these
shapes the Platonic solids, but we have a new model for the universe
and a new understanding of earth, air, fire, and water. You’ll need a
different book for that information, though!
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Dear Leon,

A Platonic solid is one where each face is a regular polygon con-
gruent to every other face, with the same number of faces meeting
at each vertex. So we only have to look at one vertex to see what hap-
pens at every vertex. At least three faces must meet at each vertex.
(Why? Well, think about it. One face not meeting any others is just a
flat plane. Two faces meet in a line. Adding a third face to two more
faces is what makes a point at their intersection.)

1. Let’s start by seeing how many Platonic solids we can make
with equilateral triangles. There are three edges per face, and
each face is an equilateral triangle with an interior angle of 60
degrees. We can fit three, four, or five of these around a vertex,
but we cannot fit six or more and still get a polyhedron. Why?
If the number of 60-degree angles together equals 360 degrees,
then that would mean that the shape is flat and we would no
longer be talking about a solid shape. To find out what that
maximum is, think: 360 ÷ 60 = 6. This indicates that we cannot
fit six or more 60-degree angles around a vertex and still have
a polyhedron.

Now think about each case that does work:
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Dear Dr. Math,

I’m doing some research about Platonic
solids. I learned that there are only five
Platonic solids. I know that it has some-
thing to do with the interior angles, and I
did some searches on the Internet, but I
could not find a specific solution to the
question: why are there only five Platonic
solids? If there is a formula, I would like
to see that also. Thank you.

Yours truly,

Leon

Only Five
Platonic
Solids
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a. Three faces meet
at each vertex.
This is a 
tetrahedron.

b. Four faces meet
at each vertex.
This is an
octahedron.

c. Five faces meet
at each vertex.
This is an
icosahedron.

2. Let’s see how many Platonic solids we can make with squares.
There are four edges per face, and each face is a square with
an interior angle of 90 degrees. We can fit only three of these
around a vertex and still get a solid, not flat,
shape, since 360 ÷ 90 = 4.

Each vertex touches three faces. This is a
cube. f = 6, e = 12, v = 8. f – e + v = 6 – 12 + 8 = 2.

3. How many Platonic solids can we make with pentagons?
There are five edges per face, and each face is a regular
pentagon with an interior angle of 108 degrees. Since 360 ÷ 108
= 3.3

–
, we can only fit three of these around a vertex.

Each vertex touches three faces. This is a
dodecahedron. f = 12, e = 30, v = 20. f – e + v = 12 – 30
+ 20 = 2.

4. What about making Platonic solids with other polygons? The
hexagon is next in order. There are six edges per face, and
each face is a regular hexagon or more with an interior angle
of 120 degrees or more. Since 360 ÷ 120 = 3, we cannot fit three
of these around a vertex and get a polyhedron. So this case is
impossible.

In all, there are just five cases possible.

—Dr. Math, The Math Forum

f = 4, e = 6 , v = 4

f – e + v = 4 – 6 + 4 = 2

f = 8, e =12 , v = 6

f – e + v = 8 – 12 + 6 = 2

f = 20, e =30 , v = 12

f – e + v = 20 – 30 + 12 = 2



Dear Lorraine,

To truncate a number at the hundredths place would mean to drop
the digits to the right of the hundredths place. This is the same as
rounding down to the nearest hundredth, unless the number is neg-
ative, in which case it is the same as rounding up.

On the other hand, you can truncate a polyhedron by cutting off
its corners; a soccer ball is a truncated icosahedron. In general, you
can see that the meaning is “to cut off.” It is related to the “trunk” of
a tree, which is what you get if you cut off the branches.

—Dr. Math, The Math Forum

Dear Leon,

Platonic solids, as you probably know, are the five polyhedra whose
faces are all identical regular polygons. They are named for Plato,
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Dear Dr. Math,

What does truncating mean?

Yours truly,

Lorraine

Truncating

Dear Dr. Math,

I was wondering if you could give me some
information on Platonic solids. I am doing
an essay, and I need to know about these
two things:

1. Truncating each of the Platonic solids

2. The historical and current practical
applications of Platonic solids and
their truncated forms

Yours truly,

Leon

Truncating
Platonic
Solids
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the Greek philosopher, who theorized that the elements (there were
believed to be four of them) were made up of four of these shapes.

Truncation is slicing off the corners (vertices) of a polyhedron. It
adds a face at each corner—the cut surface. If three faces meet at a
vertex, as in a cube, then the new face is a triangle, with an edge
meeting each of the three original faces. What happens to those
original faces: How many edges do they have now? How many ver-
tices does the polyhedron have now?

You can truncate just a little or a lot. You can truncate so much
that the new faces meet. This will change the number of vertices and
the number of edges on the original faces. You can truncate even
more. What happens then?

Some of the polyhedra that you make by truncation are sort of
regular. Not as regular as the Platonic solids, but they are interest-
ing enough that they are named after another Greek philosopher,
Archimedes. The Archimedean solids have regular polygons for
faces, but the faces are not all the same. Can you figure out how
much to truncate each Platonic solid so that its faces are all regular
polygons? For that matter, can you truncate a Platonic solid and end
up with another Platonic solid?

You can see that there are a lot of good questions to ask and answer
as you explore truncation. Try to make a table. Write down the Platonic
solid you start from, how you truncated it (a little? a lot?), and what the
resulting solid looks like. Some can be made in more than one way.
There are amazing connections among them. Have fun exploring!

As for history and applications, I mentioned Plato and Archi-
medes. You might look into the ideas that the astronomer Kepler had
about these solids. You will recognize one truncated form that is
associated with a very popular sport—the soccer ball is made from
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a truncated icosahedron. In chemistry, there are polyhedral mole-
cules known as “buckyballs” or “fullerenes” that have gotten a lot of
attention lately. These are the same shape as a slightly squashed
soccer ball. The man for whom they are named, Buckminster Fuller,
also designed a globe or map shaped like a dodecahedron. Those are
some things that come to my mind right away.

—Dr. Math, The Math Forum

Surface Area
What you learned about two-dimensional figures in Part 1 will be use-
ful in this section, too. When you’re working with surface area, you’re
thinking about the covering or “skin” of each three-dimensional fig-
ure. If you could lift the faces off the figures and consider them one at
a time, you could see each one as two-dimensional. You can use what
you know about calculating the area of a flat figure when you find the
surface area of a three-dimensional solid.
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Dear Lorraine,

The basic idea is that to find the surface area of a figure, you break
the figure up into individual faces, find the area of each face, and 
add them up. Sometimes this results in a very compact formula 
that doesn’t look very much like what you did, but that’s okay, it’s still
correct.

Let’s look at a couple of examples. How about a cube? There are
six faces to a cube. (If you forget this, recall that the faces of dice are
numbered 1 to 6.)

Each face of a cube is a square, and the length of each side of the
square is the same as the length of an edge of the cube. The area of
a square is the length of a side multiplied by itself. If we let S stand
for surface area, then the surface area of a cube is

S = area of face 1
+ area of face 2
+ area of face 3
+ area of face 4
+ area of face 5
+ area of face 6

S = edge ⋅ edge
+ edge ⋅ edge
+ edge ⋅ edge
+ edge ⋅ edge

Dear Dr. Math,

I don’t understand the formulas to figure
out the surface area on different kinds 
of figures. It is really confusing to me,
and it’s hard to explain what I don’t under-
stand.

Yours truly,

Lorraine

Finding
Surface
Areas



+ edge ⋅ edge
+ edge ⋅ edge

S = 6 ⋅ edge ⋅ edge
= 6 ⋅ edge2

(The figure above is called a net of the cube: it’s what you get if you
cut apart some of the faces of the cube and unfold it.)

Now, suppose we don’t have a cube but a rectangular prism (like
the shape of a cereal box). We still have six faces, but now they come
in pairs, and each face is a rectangle. Two of the rectangles have
dimensions width by height, two have dimensions width by length,
and the remaining two have dimensions length by height. So the
surface area is

S = area of face 1
+ area of face 2
+ area of face 3
+ area of face 4
+ area of face 5
+ area of face 6

S = width ⋅ height
+ width ⋅ height
+ width ⋅ length
+ width ⋅ length
+ length ⋅ height
+ length ⋅ height

S = 2(width ⋅ height + width ⋅ length + length ⋅ height)

Let’s look at one more example: a cylinder. There are three faces
to a cylinder: a circular one at each end and the big curved side,
which can be pictured rolled out flat as a rectangle.

The area of each circle is pi times the square of the radius. So the
surface area is
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S = area of circle 1
+ area of circle 2
+ area of side

S = π ⋅ radius2

+ π ⋅ radius2

+ area of side

The height of the rectangle (its height is sideways in this illus-
tration, remember) is the height of the whole cylinder. What is the
width of the rectangle? It’s the circumference of the circles! So we
can complete the formula:

S = π ⋅ radius2

+ π ⋅ radius2

+ height ⋅ circumference

S = π ⋅ radius2

+ π ⋅ radius2

+ height ⋅ π ⋅ diameter

S = π ⋅ radius2

+ π ⋅ radius2

+ height ⋅ π ⋅ 2 ⋅ radius

Now, each of these terms has pi in it, so we can factor that out:

S = π ⋅ (radius2 + radius2 + height ⋅ 2 ⋅ radius)

Each term in parentheses also has a radius in it, so we can factor
that out, too:

S = π ⋅ radius ⋅ (radius + radius + 2 ⋅ height)

We can add the radii together:

S = π ⋅ radius ⋅ (2 ⋅ radius + 2 ⋅ height)

And now we can factor out the 2:

S = 2 ⋅ π ⋅ radius ⋅ (radius + height)



Now, here’s the thing. If you’re not going to use this formula every
day, there’s absolutely no point in memorizing it. I certainly haven’t!
If I want to compute the surface area of a cylinder, I’ll break it into
two circles and a rectangle made from the curved side, compute
those areas, and add them up. And I recommend that you do the
same thing, rather than trying to learn all the compact formulas.

—Dr. Math, The Math Forum

Dear Leon,

In construction, surface area affects planning (how much to buy) and
costs (how much to charge) in connection with such things as wall-
board, shingles, and paint. In manufacturing, you will have the
same issues—say, the cost of making boxes or printing or sheet
metal parts. In designing, surface area enters into calculations of
wind resistance and drag in cars or airplanes, as well as pressure
and strength of materials.

The surface area exposed to air affects how fast something cools
or heats or dries out. Elephants, for example, need big ears to
increase their surface area for cooling purposes. Many objects have
complex shapes to increase their surface area: the inside of your
lungs, intestines, and brain; air cleaners; radiators—and towels, as
you mentioned, which have greater surface area because of the
loops of thread that stick out from them. Other things avoid flat
shapes to minimize surface area and keep from drying out: pine
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Dear Dr. Math,

I was just curious—why is surface area so
important? What kinds of things depend on
surface area? I’ve heard of towels and how
surface area is important, but what else? 
. . . in construction? I don’t know. Please
tell me and give me a few examples.

Yours truly,

Leon

The 
Importance
of Surface
Area
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needles and cactus plants, for example, or terrariums, which are
nearly spherical in order to keep their interiors as moist as possible.

Many things you buy for home
use, such as fabric, plastic wrap,
and so on, are priced by surface

area—or, if not, it will help you
to know the cost per amount

of surface area to decide
which is the best buy.

—Dr. Math, The Math
Forum

Volume
A simple way to think about volume is this: if you have two identi-
cal lumps of clay and you make two different shapes with them, the
two shapes have the same volume. If you go into a store that sells
kitchen supplies and look at measuring cups, you can find them in
lots of different shapes: round, square, short, tall, fat, thin. But if two
measuring cups are marked with the same measurement—say, one-
third cup—then they can hold the same volume, because it takes the
same amount of stuff to fill them. That is, you can fill one with water,
and if you pour the water into the other cup, it will fill that one, too.



Dear Lorraine,

Let’s start out with some general ideas about area and volume, then
we’ll look at prisms a bit. A mathematician can get very picky about
definitions, and sometimes the harder we think, the harder it gets to
really define something. But I bet what you probably want is just to
understand what we mean when we talk about area and volume.

Basically, the surface area of an object means how much paper
it would take to cover it (or how much paint, if you follow the direc-
tions and don’t put it on too thick or too thin). The volume is how
much clay it would take to make the object, or how much water it
would take to fill it (if it were hollow). We measure area in “square
somethings,” such as square inches. If I cut a piece of paper into 
1-inch squares and try to paste them on the surface, how many 
will it take? Volume is measured in “cubic somethings,” such as
cubic inches. If I try to build the shape out of 1-inch cubes, how many
will it take?

The main similarity between surface area and volume is that
both are measurements of the size of something. The main differ-
ence is that area deals only with the outside, while volume deals
with the whole thing. Area is two-dimensional (like a sheet of 
paper, which doesn’t have any significant thickness), and volume 
is three-dimensional (it involves the height, width, and thickness of
an object). But when you’re talking about surface area, you have to
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Dear Dr. Math,

What are the definitions of surface area
and volume? How do you find the surface
area and volume of a rectangular prism and
a cube? Can you show me a diagram of a
rectangular prism and a cube? What are the
differences between surface area and
volume? Are there similarities?

Yours truly,

Lorraine

Surface
Area and
Volume:
Cubes and
Prisms



be careful, because although the object you’re measuring has 
three dimensions, you’re just measuring its surface, which is 
two-dimensional.

Here’s a figure of a rectangular prism:

A cube is just a particular kind of rectangular prism that is the 
same size in all three directions. A rectangular prism can be 
thought of as the shape you’d get if you put a rectangle flat on the
table in front of you, then lifted it straight up and imagined that it 
left a shape behind. Or you could think of it as a stack of identical
rectangles:

To find the volume, just multiply the three dimensions together.
For example, if you have a 2-inch by 3-inch by 4-inch prism, the
volume is 2 ⋅ 3 ⋅ 4 = 24 cubic inches. To see why, just imagine build-
ing the prism out of 1-inch cubes. You’ll need six (2 ⋅ 3) on the bottom
layer, six on the next, and so on for four layers, so it will take 
6 ⋅ 4 = 24 cubes.
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But if you want to calculate the surface area, you have to figure
out the area of each rectangular surface. There is a top and a bottom,
both 2 ⋅ 3 (6 square inches each), a front and a back, both 2 ⋅ 4 
(8 square inches each), and a left and a right side, both 3 ⋅ 4 (12 square
inches each), for a total of

12 + 16 + 24 = 52 square inches

Can you picture that? If not, get out some blocks and some paper and
do it!

If you like formulas, then for a prism that measures l units long
by w units wide by h units tall, the volume is

l ⋅ w ⋅ h

and the surface area is

2 ⋅ l ⋅ w + 2 ⋅ l ⋅ h + 2 ⋅ w ⋅ h

—Dr. Math, The Math Forum

Dear Leon,

A cup is a unit of volume, just like a cubic inch is. The formula for the
volume of a rectangular prism is

volume = length ⋅ width ⋅ height
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Dear Dr. Math,

How can I calculate the volume of a box if
I know how many cups of rice (or something
like that) fill it?

I don’t understand how 2 cups is a volume
measure, since volume = length ⋅ width ⋅
height. For example, if I calculate the box
to have a volume of 24 cubic inches, how is
that the same as the 2 cups of rice it holds?

Yours truly,

Leon

Cups and
Volume
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but volume itself is a measure of the amount of three-dimensional
stuff that an object can hold.

Suppose I have a box with dimensions 2 ⋅ 3 ⋅ 4 inches. The volume
of the box is 2 ⋅ 3 ⋅ 4 = 24 cubic inches, right? So if I fill the box with
rice, I have 24 cubic inches of rice.

Now, suppose I have a cylindrical bowl that is just large enough
to hold that rice—that is, if I pour all the rice from the box into the
bowl, the bowl is completely filled.

The box and the bowl hold exactly the same amount of three-
dimensional stuff, whether it’s rice, water, flour, sand, or just air.
That’s what it means for them to have the same volume.

It turns out that a gallon container can hold 231 cubic inches of
stuff. This is independent of the shape of the container—whether it’s
a box, or a cylinder, or a sphere, or a truncated cone (like a dispos-
able coffee cup, or some measuring cups), or a torus (i.e., a dough-
nut), or just some weird shape, like many perfume bottles. So any
quart container will hold one-quarter of that amount, or 231 ÷ 4 cubic
inches of stuff; any pint container will hold half of 231 ÷ 4, or 231 ÷ 8
cubic inches of stuff; and any cup container will hold half of 231 ÷ 8,
or 231 ÷ 16 cubic inches of stuff.

Different common shapes have different formulas that can be
used to compute their volumes. In the example of the box and the
bowl, suppose I know that the bowl is 6 inches high. I can use the
formula for volume,

volume = π ⋅ radius2 ⋅ height

to find out the radius of the bowl by solving for radius:

Or, if I know that the radius of the bowl is 4 inches, I can find out the
height by solving for height:

But no matter what dimensions they have, if the box and the bowl

height =  
volume

  radius2π ⋅

radius =  
volume

  heightπ ⋅



can hold the same amount of stuff, they have the same volume. The
next time you’re in a cooking equipment store, take a look at the var-
ious measuring cups. They may all have different shapes, but a
measuring cup marked “1 cup” will hold 231 ÷ 16 cubic inches of
water, sugar, flour, or anything else you fill it with no matter what the
shape of the cup.

So if you know how many cups of rice a box will hold, you already
know the volume of the box, although you may want to convert it to
different units, like cubic inches, or cubic centimeters, or liters, or
whatever. It’s sort of like this: suppose I tell you that the length of a
certain room is exactly 16 times the length of a particular shoe box.
If you have the shoe box, you can measure it in inches, or centime-
ters, or whatever other units you prefer; then you can multiply by 16
to get the length of the room. So if I tell you how many shoe boxes fit
along one wall of the room, you know the length of the room and you
just have to convert it to units that you like better.

—Dr. Math, The Math Forum

Dear Lorraine,

As a matter of fact, it is possible if you only consider the numerical
value of each, disregarding the units of measurement (because area
is square and volume is cubic). Think about this: when you make a
rectangular prism (a box) bigger and bigger, its surface area grows
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Dear Dr. Math,

I have been doing a geometry scavenger hunt
for school, and I have been pondering this
for days: is it possible to have a rectan-
gular prism that has a volume greater than
its surface area? I have tried everything I
can think of, and I can’t figure it out! If
it is possible, could you please give me
the measurements?

Yours truly,

Lorraine

A Rectan-
gular Prism
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about as fast as the square of its lengths (the lengths of its edges),
and its volume grows about as fast as the cube of its lengths.

So think about a really simple case: a cube. If the edge length is
s, the surface area of a cube is 6s2, and the volume is s3. Can you pick
a value of s that makes s3 bigger than 6s2? However you answer that,
whether s3 is larger or smaller than 6s2 will depend on the units you
choose. (Remember the answer to“Can Area Be Larger Than Perime-
ter?” on page 54?)

—Dr. Math, The Math Forum

Dear Leon,

There’s a nice simple answer to that last question, though it won’t
solve everything for you. Suppose you vaguely remember that one
formula for a cylinder is πr2h (pi times radius squared times height)
and another is 2πrh (twice pi times the radius times the height). You
can tell which is the area and which is the volume by looking at the
dimensions.

Suppose the radius is 2 inches and the height is 3 inches, and we
accept 3.14 for pi. Then our first formula gives

πr2h = 3.14 ⋅ (2 in)2 ⋅ 3 in
= 3.14 ⋅ 4 in2 ⋅ 3 in
= 37.68 in3

Do you see how I work with the units just as if they were numbers
(or variables in algebra) and end up with the units for the answer?
Since the units in3 are cubic, this is a volume.

Dear Dr. Math,

I am having trouble memorizing the geomet-
ric formulas. Say you have to calculate the
volume of a can and you have the radius.
How can you tell that you are right and
that you haven’t done the area?

Yours truly,

Leon

Area, Surface
Area, and 
Volume: How 
to Tell One 
Formula from
Another
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Similarly, for the second formula

2πrh = 2 ⋅ 3.14 ⋅ 2 in ⋅ 3 in
= 6.28 ⋅ 6 in2

= 37.68 in2

we get square units, in2, so this is an area.
In general, you can just count the dimensions in the formula.

There are three dimensions represented in r2h, so it’s a three-
dimensional quantity, a volume. There are only two dimensions rep-
resented in rh, so it’s an area.

Finally, probably the best way to learn these formulas is to know
where they come from. You’re probably not ready to figure out the
sphere formulas on your own, but the cylinder formulas are simple.
The lateral surface area is just the circumference of the base circle
(2πr) times the height (h)—picture how you’d make the side of a cylin-
der by rolling up a rectangle. The volume is the area of the base circle
(πr2) times the height (h)—just like the volume of a rectangular solid.

So how can you memorize the formulas? I would suggest you write
all of the geometric formulas down in a table and look for relation-
ships. I’ve just told you how the formulas for a circle and a rectangle
combine to give you a cylinder. The more of those you can find, the bet-
ter. You’ll also find some less obvious ones: the volumes of a sphere
and a cone have an interesting relationship. Make friends with the
formulas, and they’ll reveal some of their personal secrets to you.

—Dr. Math, The Math Forum

Nets of Solids
Imagine that you have a sheet of paper and you want to draw some-
thing so that when you cut it out and fold it, you can make a three-
dimensional figure. The drawing that results in the solid figure is
called a net. You’ll usually need to add tabs to the edges of the fig-
ures if you actually want to glue them together, but you won’t need
tabs if you use tape to hold them together.
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Dear Lorraine,

The net of a polyhedron (a three-dimensional shape made up of flat
faces) is a plane diagram that shows how the edges of the polyhe-
dron are connected. Below shows you several nets in a geometrical
sense: the shape is flattened out by cutting along the edges. You can
cut these nets out and actually build the shape. You will often see
tabs stuck to the sides of the net, which will make it easier to build
a model from the net. Here’s a chart:

Name Solid Net

Cube

Tetrahedron
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Dear Dr. Math,

In our geometry project, we are supposed to
draw the net of various shapes. What is the
net of a shape?

Yours truly,

Lorraine

Nets in a
Geometrical
Sense



Name Solid Net

Octahedron

Dodecahedron

Icosahedron

—Dr. Math, The Math Forum
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Dear Leon,

I believe the kind of net you are asking about is a flat drawing that
can be folded into the shape you want. In both cases, you can start
with the base (a hexagon or a rectangle), then add the sides, folded
down flat; and finally, for the prism, attach the top to one of the
sides. Here are my attempts at both, to suggest how it should look.

Hexagonal pyramid: fold all six points up so that they meet:

(All twelve edges of the side faces must be the same length for a reg-
ular pyramid.)
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Dear Dr. Math,

How would you draw a hexagonal pyramid and
a rectangular prism in net form?

Yours truly,

Leon

The Net of a
Hexagonal
Pyramid



R   

Rectangular prism: fold the four sides up, then fold the top over:

Pay attention to which edges have to have the same length so that
when they are folded they will meet properly. For example, there are
eight edges whose length is the height of the box (marked with
arrows in the diagram).

—Dr. Math, The Math Forum

esources on the Web
Learn more about three-dimensional geometric figures at these
Math Forum sites:

Math Forum: Crystals
mathforum.org/alejandre/workshops/toc.crystal.html
Students studying polyhedra enjoy seeing the structures as they
occur in the real world. Crystalline structures can be categorized
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into seven crystal systems. Students can access links to photographs
of beautiful crystals. Paper models of crystals can be made by print-
ing out nets of crystals and constructing the models. CrystalMaker
software gives students experience with ball-and-stick, space-
filling, wire-frame, stick, dot surface cloud, and polyhedral models
of crystals.

Math Forum: Polyhedra in the Classroom
mathforum.org/alejandre/workshops/unit14.html
Middle school student activities to pursue with a computer in the
classroom. Introduction to polyhedra; paper nets to print out and
fold; Kaleidotile; buckyballs; crystals (paper nets, systems); cube
coloring problems; and links to polyhedra on the Web.

Math Forum: Studying Polyhedra
mathforum.org/alejandre/applet.polyhedra.html
What is a polyhedron? A definition and a Java applet will help in
exploring the five regular polyhedra to find how many faces and ver-
tices each has, and what polygons make up the faces.

Shodor Organization: Project Interactivate: Surface Area and Volume
shodor.org/interactivate/activities/sa_volume
This activity allows the user to manipulate polyhedra to experiment
with surface area and volume.

Utah State University: National Library of Virtual Manipulatives: 
Platonic Solids

matti.usu.edu/nlvm2/nav/frames_asid_128_g_3_t_3.html
This virtual manipulative allows students to display, rotate, and
resize Platonic solids. It also allows them to select vertices, edges,
and faces, and to show that the number of vertices minus the num-
ber of edges plus the number of faces is equal to 2 (Euler’s formula).
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Utah State University: National Library of Virtual Manipulatives: 
Platonic Solids Duals

matti.usu.edu/nlvm2/nav/frames_asid_131_g_3_t_3.html
With this applet it can be seen that a Platonic dual is two Platonic
solids: one placed inside the other. The vertices of the inner Platonic
solid are the center points of each of the surfaces of the outer Pla-
tonic solid.

Utah State University: National Library of Virtual Manipulatives: 
Platonic Solids—Slicing

matti.usu.edu/nlvm2/nav/frames_asid_126_g_3_t_3.html
This virtual manipulative displays a Platonic solid on the left and
the outline of a plane that slices through it on the right.

Utah State University: National Library of Virtual Manipulatives: 
Space Blocks

matti.usu.edu/nlvm2/nav/frames_asid_195_g_3_t_2.html
Create and discover patterns using three-dimensional blocks.
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Symmetries create patterns that help us organize our world concep-

tually. Symmetric patterns occur in nature and are invented by artists,

craftspeople, musicians, choreographers, and mathematicians.
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Symmetry is a topic very close to all of us because we carry
examples of it wherever we go! Hold your hands out, palms down
with your thumbs touching. Do they look something like this?

This is an example of reflectional symmetry. Reflection is one
type of rigid motion—that is, a movement that preserves shape or
keeps it looking the same. (Rigid motions are also called rigid trans-
formations, or isometries.) When you flip a handprint over to make
an image with reflectional symmetry, it doesn’t change the shape of
the handprint into any other shape. Each type of symmetry in the
plane results from a different type of rigid motion, and we’ll talk
about them all in this section.

In this part, Dr. Math explains

• rigid motions: rotation, reflection, translation, and glide
reflection

• symmetries

• lines of symmetry

• tessellations

Rigid Motions: Rotation, Reflection, 
Translation, and Glide Reflection

Rigid motions involve moving things around the plane so that their
relative measurements remain the same. Once you rotate a square,
for example, all the side lengths, the diagonals, and the angles still
have their original measurements. This section will introduce you to
the various types of rigid motions in the plane: rotation, reflection,
translation, and glide reflection.



Dear Leon,

Flip and turn are meant to be kid-friendly replacements for the tech-
nical terms “reflection” and “rotation.” You’re supposed to be able to
picture them more easily using the simpler words. So let’s relate
their math meaning to their everyday use.

If I turn around, I pivot so that I face a different direction. Here I’ll
turn, or rotate, a square by about 45 degrees:

A rotation doesn’t change the shape, but it will change the posi-
tion of parts of the shape and the direction it faces. It’s best to picture
rotation as rotation in place—that is, imagine my first square as a
piece of paper, put a pin through the middle, and rotate it around the
pin so that the center of my second figure is actually in the same
place as the center of the first.

The point of rotation can be in different places:
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Dear Dr. Math,

What is the difference between flip and
turn? I find it really hard.

Yours truly,

Leon

Reflection
and Rotation



If I flip a pancake, I’m turning it over. The same sort of thing hap-
pens if I look at myself in a mirror; the left and right sides switch
places. Here I’ll flip a right triangle over:

Notice that I can’t make this same change by turning; if the tri-
angle were a separate piece of paper, I would have had to turn it
over. If I had to keep the same side on top, I would have had to
replace it with a new copy made backward; or I could have just put
a mirror along the dotted line and only seen the reflection of the orig-
inal triangle in the new position. You can also imagine turning (flip-
ping) a page in a book; the dotted line is then the middle of the book.
Again, the line can be in different places. These are both reflections:

—Dr. Math, The Math Forum
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Dear Dr. Math,

Can rotation of a figure and reflection of
that same figure yield the same result at
times? If a shape with one line of symmetry
is reflected across a line, this same image
could be obtained by rotating the shape,
right?

Yours truly,

Lorraine

Reflection
and Rotation



Dear Lorraine,

I think you are talking about something like this:

Here I drew a T and an L and reflected both across a line. The image
of the L clearly can be obtained only by reflection; but the T image
can also be obtained by rotation about a point on the line, as shown.

So if a problem asks for any transformation that will take the first
T into the other, you can use either the reflection or the rotation. Of
course, if the corresponding points on the original and the image
were marked, that would force you to choose either the reflection or
the rotation.

Here’s a pair of T’s, the second of which could only be obtained
by rotation:

And here’s a pair that used reflection:

Do you see how we can tell which pair used which motion?

—Dr. Math, The Math Forum
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Dear Leon,

It means to move from one place to another. To translate an object
means to move it without rotating or reflecting it. Every translation has
a direction and a distance. That’s all it needs—it’s the simplest kind of
rigid motion. It gets combined with another rigid motion, reflection, to
make yet another type of rigid motion called a glide reflection. Here
are some translations. The arrows indicate direction and distance:

—Dr. Math, The Math Forum
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Dear Dr. Math,

In geometry, what does translation mean?

Yours truly,

Leon

Translation

L L
L L

LL

Dear Dr. Math,

My teacher says that you can’t make this
figure by reflection. But one leaf is a 
mirror image of another, so why not?

Yours truly,

Lorraine

Glide
Reflection
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Dear Lorraine,

If you reflected a leaf on the top, you’d get a leaf on the bottom
directly beneath the original leaf. But in this figure, the bottom
leaves are offset—they’ve been moved along the line a little, away
from the matching leaves. So you have to reflect a leaf, then move it
along the line. That’s a glide reflection. You could also glide the leaf
along the line, then reflect it—the effect is the same. Here’s another
example, with the reflection line and the translation marked. Can
you see where the other R would be if we did the reflection and trans-
lation in the other order?

—Dr. Math, The Math Forum

Symmetries
Now we know about rigid motions. How do they relate to symmetry?
Symmetry comes from a Greek word meaning “having the same
measure.” Different parts of a symmetric figure have the same meas-
ure, the same proportions. That should sound familiar—rigid
motions preserve the measures of shapes. And sure enough, the four
different rigid motions are what you have to do to get the four dif-
ferent types of symmetry in the plane.
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Before glide reflection

After glide reflection



Dear Leon,

Plane symmetries are derived from rigid motions, or transformations.
That means you move all the points that make up a figure around the
plane so that their positions relative to one another remain the same,
although their absolute positions may change. In other words, the fig-
ure looks the same when it’s been transformed. There are four types
of rigid motion in the plane and thus four types of plane symmetry:

1. Rotation of a figure can make a symmetry called rotational
symmetry.

2. Reflection can make another type called reflectional symme-
try. This is also known as mirror symmetry, bilateral (from “bi”
meaning “two” and “lateral” meaning “side”) symmetry, or line
symmetry.

3. Translating an object can result in translational symmetry.

4. The fourth type of symmetry is glide reflectional symmetry. I
bet you can guess what rigid motion this comes from!

Not every rigid motion results
in a symmetric figure. Picture a
table knife. Imagine rotating it 90
degrees clockwise around a
point at the base of the handle.
What does it look like?

Now you have two knives at
right angles to each other. Does
the figure have rotational sym-
metry? No, it does not. Imagine
rotating both knives—the whole
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Dear Dr. Math,

What are all the different types of symmetry?

Yours truly,

Leon

The Four
Plane 
Symmetries



figure—by 90 degrees. What do you
get? A pair of knives pointing east and
south instead of north and east. Does
that figure look the same as the origi-
nal?

No, you can tell which is which. To
get an image with rotational symmetry,
you’d have to duplicate the knife two
more times—at 180 degrees and 270
degrees—so that the knives formed an
addition sign. That would be a figure
you could rotate as a whole, and have it
look the same.

A figure has rotational symmetry if you can rotate it around a
point so that its rotated image coincides with the original figure
after turning it less than 360 degrees. A special kind of rotational
symmetry is called point symmetry, which occurs when
the figure has 180-degree rotational symmetry. If you
picture an S with a point in the middle, then rotate it
around that point by 180 degrees, you’ll see the same S.
That’s point symmetry.
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A figure has reflectional symmetry if you flip the figure over a
line so that the resulting image coincides with the original. There
are other names for reflectional sym-
metry, including line symmetry, bilat-
eral symmetry (because the line of
symmetry divides the object into two
[“bi”] sides [“lateral”] that look like
each other), and mirror symmetry
(because you can place a mirror on
the line of symmetry to see the sym-
metry).

Translational symmetry is a bit more involved. You remember
that a translation is the simplest of the rigid transformations, just
sliding a shape along a line to another place. Well, translational
symmetry is when you have a bunch of shapes translated along a
single line. It’s not translational symmetry if you only take part of a
pattern. Here’s an example of what I mean:

Because the figure on the left is made up of two units that are
identical by translation, you can repeat the unit to translate it. The
figure on the right, though, is made up of two reflected units. To main-
tain the translational symmetry, you have to use the whole thing. If
you only used the top half of it, you would break the pattern. And the
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pattern has to go on forever for it to be translational symmetry. (You
don’t have to draw forever, though—mathematicians just assume the
pattern continues.)

Glide reflectional symmetry is the only type of symmetry that
involves more than one step because glide reflection is the only
rigid motion that involves two steps. And because glide reflectional
symmetry involves translation, it shares a property with transla-
tional symmetry that a pattern must be considered infinite. Let me
put that in concrete terms: remember that leafy vine? It’s got glide
reflectional symmetry if we consider it to be an infinite pattern.

(One sneaky way to make a design that has translational or glide
reflectional symmetry without having to make it infinite is to expand
it into three dimensions: if you put a repeating pattern around the
rim of a bowl, it will go around in a circle forever!)

—Dr. Math, The Math Forum
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3 1  2  3  4  5  6    Lines of Symmetry
Reflectional symmetry is one of the easiest symmetries to spot, once
you’ve trained yourself to see the lines of symmetry. What’s a line of
symmetry? It’s where the mirror goes in a mirror-symmetric picture.
Here’s an example. Your right hand by itself is not symmetric, but
your two hands held up next to each other are symmetric. We can tell
because if we put a mirror on the line between them and looked at
the mirror image of one hand next to itself, it would look just like the
two hands together. Or if you put your handprints on a piece of paper
and folded the paper in half on the line of symmetry between them,
you could hold the paper up to the light and see only one handprint,
because they would line up on top of each other. The fold is a line of
symmetry.

Dear Lorraine,

Horizontal and vertical symmetry are reflectional, or mirror, sym-
metries, with the mirror lined up in particular directions. Let’s take
some simple examples:

Vertical symmetry: if you draw a vertical line down the middle 
of an object with vertical symmetry, the two sides will be mirror
images of each other. 

Dear Dr. Math,

I have a project where I have to look for
things outside that involve symmetry. One of
the things I have to find is an example of
horizontal symmetry, and I have no idea what
that is. I tried to look it up in a diction-
ary, but it is just not making any sense.
Can you please help me?

Yours truly,

Lorraine

Horizontal
and Vertical
Symmetry



A

Examples of capital letters that have vertical symmetry are

A H I M O T U V W X Y

Horizontal symmetry: if you draw a horizontal line across the
middle of an object with horizontal symmetry, the top will be a mir-
ror image of the bottom.

B

Examples of capital letters that have horizontal symmetry are

B C D E H I O X

Words with horizontal symmetry include

BIDED,   DECIDED,   BOXED,   
OXIDE,   HIDE,   CHOICE

This drawing of a bow and arrow is a nice example of horizontal
symmetry:

Some flags have horizontal symmetry; here are a few of them:

Austria’s flag is three horizontal
stripes of red, white, and red.
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The flag of the Bahamas has a
black triangle on the left with
three horizontal stripes of
turquoise, yellow, and turquoise.

The left side of the Bahrain flag is
white and the right side is red with
a zigzag pattern joining the two.

Now see what other examples you can
find on your own.

—Dr. Math, The Math Forum



Dear Leon,

A line of symmetry is an imaginary line drawn through a plane fig-
ure; if the figure is flipped over using that line as an axis of rotation,
you get the same figure back again.

We can create a simple example with an isosce-
les triangle. Suppose that you orient the figure so
that the odd side (length not equal to the other two,
which are equal to each other) is horizontal, and the
opposite vertex is above it. Then the line of symme-
try is the altitude from that vertex down to that odd
side. It is not part of the original figure, which is why
I called it imaginary, but it is easy to construct.

If you flip the triangle over using this altitude as a line of sym-
metry, the equal sides will be swapped, the equal base angles will
be swapped, the vertex angle will be left alone, and the base will be
left in place. You will get an identical copy of the original figure.

Another, more complicated example is a square. There are four
lines of symmetry. Two are the diagonals of the square, and two go
through the middles of the sides. Can you see why? These lines are
not part of the original figure but are constructed from it.

—Dr. Math, The Math Forum
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Dear Dr. Math,

What are lines of symmetry?

Yours truly,

Leon

Lines of
Symmetry



Dear Lorraine,

You can test a line to see if it’s a line of symmetry for a given shape by
reflecting a point that’s on the shape over the line. If the point’s reflec-
tion is another point on the shape, the line may be a line of symmetry.

If the point’s reflection lands somewhere not on the shape, the line
is definitely not a line of symmetry.

Here’s why you have to test points from different parts of the
shape:
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Dear Dr. Math,

How do I know a line is a line of symmetry?
Is there a way I can tell other than by
just looking at it?

Yours truly,

Lorraine

Testing
Lines of
Symmetry



This is not a line of symmetry! Generally if you test the vertices of a
figure made of straight line segments, and they agree with each
other, then you can be sure that you have a line of symmetry.

So we can define symmetry about a line of reflection this way: if
we reflect every point on the shape over the line, we end up with
another point on the same shape every time.

—Dr. Math, The Math Forum

Dear Leon,

It seems you are asking the question: how many lines can a circle be
reflected about and still be self-coincident (i.e., fall back onto itself)?

The answer is infinitely many. Take any diameter of the circle and
reflect the circle about that diameter, and it will be self-coincident.
Those of you who thought of 180 and 360 were probably thinking of the
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Dear Dr. Math,

How many lines of symmetry are there in a
circle? This has been an ongoing conversa-
tion in our class. We’ve asked many teach-
ers, and we have come up with three
answers: 180, 360, and infinitely many.
Which one is correct?

Sincerely,

Leon

Lines of
Symmetry
in a Circle
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number of degrees in a circle—but not only is there a line of symme-
try at each degree, there’s one at each half of a degree, at each eighth
of a degree, at each seventeenth of a degree . . .

There are an infinite number of diameters of a circle, so there are an
infinite number of such lines.

Notice that the circle is also self-coincident under any rotation.
So there are an infinite number of symmetry rotations of the circle.

—Dr. Math, The Math Forum

Dear Lorraine,

Let’s take a square as a good starting point. Single polygons do not
have translational or glide reflectional symmetry, so all we have to
worry about is reflectional and rotational symmetries.

Number the corners of a square like this:

Dear Dr. Math,

How do you figure out how many symmetries
there are in a polygon?

Sincerely,

Lorraine

Symmetries
in a Square



When we flip the square about a line of symmetry or rotate the
square, we will call this a rigid motion, because the square main-
tains its shape (i.e., it doesn’t get squashed or anything). A square
has four lines of symmetry: the horizontal line, the vertical line, and
the two diagonals. It also has four rotations: the 90-degree turn, the
180-degree turn, the 270-degree turn, and the 360-degree turn.

The horizontal line flip switches 1
and 3 and switches 2 and 4.

The vertical line flip switches 1 and
2 and switches 3 and 4.

The 1,4-diagonal line flip switches
3 and 2 and leaves both 1 and 4
fixed.

The 3,2-diagonal line flip switches
1 and 4 and leaves both 3 and 2
fixed.
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The 360-degree (or 0-degree, how-
ever you look at it) rotation leaves
everything fixed.

The 90-degree rotation moves 1 to 2,
2 to 4, 4 to 3, and 3 to 1.

The 180-degree rotation moves 1 to
4 and 2 to 3.

The 270-degree rotation moves 1 to
3, 3 to 4, 4 to 2, and 2 to 1.

Note that any one of the rigid motions followed by another rigid
motion gives us a different rigid motion. For example, the horizontal
flip, followed by the 90-degree rotation, switches 3 and 2 and leaves
1 and 4 fixed, which is the same as the 1,4-diagonal flip.

—Dr. Math, The Math Forum
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41  2  3  4   5  6    Tessellation
Have you ever stared at a bathroom floor to figure out the pattern in
the tiles? A flat-plane pattern is called a tiling or a tessellation. Any
regular pattern that tiles the plane (which means it covers the plane
with no gaps) is a tessellation. The first tessellations with actual
tiles were done with square shapes, like this:

But there are many other possible patterns, as you’ll see in this
section.

Dear Leon,

A dictionary will tell you that the word “tessellate” means to form 
or arrange small pieces (like squares) in a checkered or mosaic 
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As with translational and glide reflectional symmetries, tessellations are
assumed to be infinite patterns. You don’t really have to draw forever; you

just have to have a pattern that could go on forever.

Dear Dr. Math,

What is a tessellation? Can you give an
example?

Yours truly,

Leon

What Is a
Tessellation?
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pattern. It is derived from the Ionic version of the Greek word
“tesseres,” which in English means “four.”

The tessellation you might learn in middle school mathematics
is a tiling of the plane using a square, a triangle, or a hexagon,
where the geometric figures fit together without leaving any spaces.
Imagine that you have a room in your house that you’d like to outfit
with a new floor. You want to completely cover the floor with tile so
that it looks nice. You don’t want any gaps or holes showing between
the tiles. Let’s also say for this example that you can only have one
shape of tile. You can use as many tiles as you need so that the
whole floor is covered, but every tile has to be perfectly identical to
every other tile in a regular tessellation.

If you can completely cover the floor with a certain shape of tile,
we say that this shape tessellates the floor. With some shapes, you’ll
be able to cover the floor, and with others, you won’t. If you try using
a regular hexagon, for example, you’ll succeed. This is because each
hexagon snuggles nicely beside the others, with no gaps in between.
We call that a regular tessellation. But if you try to use an octagon,
you’ll fail. Octagons do not snuggle nicely. If you combine octagons
and squares, however, you can create a tessellation. The combina-
tion of more than one shape makes a semiregular tessellation.

—Dr. Math, The Math Forum

A semiregular tessellation of octagons and squares



Dear Lorraine,

A regular polygon has three or more sides and angles, all equal. For
each of these, you can work out the interior measure of the angles.
For a triangle, it’s 60 degrees; for a square, it’s 90 degrees; for a pen-
tagon, it’s 108 degrees; for a hexagon, it’s 120 degrees; and for any-
thing with more than six sides, it’s more than 120 degrees.

Since the regular polygons in a tessellation must fill the plane at
each vertex, the interior angle must be an exact divisor of 360
degrees. This works for the triangle, the square, and the hexagon,
and you can show working tessellations for these figures.

For all the others, the interior angles are not exact divisors of 360
degrees, and therefore those figures cannot tile the plane.

—Dr. Math, The Math Forum
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Dear Dr. Math,

I am looking for the proof of the statement
that only three regular polygons tessellate
in the Euclidean plane. I have an idea how
it is done but am not quite sure how to
write out the proof in a concise manner for
a paper I am doing on tessellations. I would
appreciate any information on this matter.

Yours truly,

Lorraine

Tessellation
Proof
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Dear Leon,

Yes, you can have tessellations that include three types of symme-
tries or even all four types (reflection, rotation, translation, glide
reflection). There are two main ideas in the reason why:

Dear Dr. Math,

Is it possible to make a tessellation with
glide reflection, rotation, and translation
all in one object?

Yours truly,

Leon

Make a
Tessellation



R   

1. In a symmetric pattern, if you have two symmetries, then you
have the combination (also called composition or product) of
the symmetries. For example, if your pattern has symmetries
of rotation by 45 degrees and rotation by 90 degrees, then it
also has rotation by 45 + 90 = 135 degrees. This pattern would
also have rotation by 45, 90, 135, 180, 225, 270, 315, and 0
degrees.

2. All four types of symmetry can be made by combining reflec-
tions.

• A rotation is the composition of two reflections in inter-
secting lines.

• A translation is the composition of two reflections in par-
allel lines.

• A glide reflection is the composition of a translation and
a reflection, so it is the composition of three reflections.

—Dr. Math, The Math Forum

esources on the Web
Learn more about symmetry at these Math Forum sites:

Regular Tessellations
mathforum.org/pubs/boxer/tess.html
A middle school lesson utilizing BoxerMath.com’s Tessellation Tool
Java applet to help students understand why equilateral triangles,
squares, and regular hexagons tessellate regularly in the Euclidean
plane.

Repeated Reflections of an “R”
mathforum.org/sum95/suzanne/rex.html
Students draw a design with reflectional symmetry and rotational
symmetry.
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Sonya’s Symmetry (English version)
Simetría de Sonya (Spanish version)

mathforum.org/alejandre/mathfair/sonya.html
mathforum.org/alejandre/mathfair/sonyaspanish.html
In this activity from Frisbie Middle School’s Multicultural Math Fair,
students use a manipulative to see and draw reflections.

Pre-Algebra Problem of the Week: Symmetry Surprise
mathforum.org/prealgpow/solutions/solution.ehtml?puzzle=219
Identify the types of symmetries in each of three patterns.

Tessellation Tutorials
mathforum.org/sum95/suzanne/tess.intro.html
A series of tutorials that teach students how to tessellate (somewhat
in the style of the art of M. C. Escher) using HyperCard for black and
white and/or HyperStudio for color, ClarisWorks, LogoWriter, tem-
plates, or simple straightedge and compass.

Middle School Problem of the Week: Tiling Triangles
mathforum.org/midpow/solutions/solution.ehtml?puzzle=143
Given the dimensions of a large triangle, find the dimensions of the
twenty-five small triangles that tile it.

Types of Symmetry in the Plane
mathforum.org/sum95/suzanne/symsusan.html
Rotation, translation, reflection, and glide reflection, with illustra-
tions and problems for consideration.



Using Kali (English version)
Usando Kali (Spanish version)

mathforum.org/alejandre/mathfair/kali.html
mathforum.org/alejandre/mathfair/kalispanish.html
In this activity from Frisbie Middle School’s Multicultural Math Fair,
students use an interactive two-dimensional Euclidean symmetry
pattern editor.
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Some handy formulas for calculating area, perimeter, volume, and
surface area.

Abbreviations

A: area

P: perimeter

V: volume

S: surface area

b: base

B: area of the base

s: side

h: height

165
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l: length

w: width

d: diameter

C: circumference

r: radius

f: number of faces

e: number of edges

v: number of vertices

Triangle Formulas

Types of Triangles

A b h

P s s s

= ⋅ ⋅

= + +

1

2

1 2 3
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Quadrilaterals

General Quadrilateral
P = s1 + s2 + s3 + s4
(angles add up to 360˚)

Square
A = s2

P = 4s

Rectangle
A = l ⋅ w
P = 2l + 2w

Parallelogram
A = b ⋅ h (Not s, not w!)
P = 2s1 + 2s2

Rhombus
A = b ⋅ h (Not s, not w!)
P = 4s



Trapezoid

P = b1 + b2 + s1 + s2
P = b1 + b2 + 2s if trapezoid is isosceles

Kite

Regular Polygons

A
diagonal diagonal

P s s

=
⋅

= +

1 2

1 2

2

2 2

A h
b b

= ⋅
+1 2

2
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Triangle

Square

Pentagon

Hexagon

Octagon



Circle
A = πr2

P = πd

Rectangular Prism or Cuboid
V = l ⋅ w ⋅ h
S = 2lw + 2wh + 2hl

Cube
V = s3

S = 6s2

Prism
V = Bh

S = 2B + perimeter of base ⋅ h

Pyramid

V Bh

S

= ⋅

=
⋅

1

3

slant height  perimeter of base

2
 +  area of base

(for regular pyramids)
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Regular Polyhedra

Euler’s formula: f – e + v = 2

Tetrahedron

Cube

Octahedron

Dodecahedron

Icosahedron

Cylinder

Right Circular Cylinder
h = length of lateral edge
V = Bh

lateral surface area = 2πr ⋅ h = πd ⋅ h
S = πd(r + h) = 2 ⋅ B + (πd ⋅ h)
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Other Solids
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Cone

Right Circular Cone

Sphere

s r d

V r d

= π = π

=
π

⋅ =
π

4

4

3 6

2 2

3 3

  

  

V Bh= ⋅
1

3



acute angle An angle measuring less than 90 degrees.
alternate angle When two parallel lines are crossed by a trans-

versal line, alternate angles are the ones on either the inside or
the outside of the parallel lines (not both), one from the group of
angles around each parallel line, and on opposite sides of the
transversal from each other.

angle The joint or bend between two intersecting lines, line seg-
ments, or rays in the plane; in three dimensions, the bend
between two intersecting planes.

area The portion of the plane enclosed by a figure in the plane. See
also surface area.

base A side or face considered as the bottom part, or foundation,
of a geometric figure. In an isosceles triangle, the side that is not
a leg, or is not equal in length to another side; in a quadrilateral,
the side you consider as the flat-on-the-ground side for the pur-
poses of measurement; in three dimensions, any side of a figure
designated as such, often one that is flat on the ground from the
viewer’s perspective.

Cartesian geometry The study of geometric forms in the coordi-
nate plane. Named for René Descartes, who was instrumental in
developing the coordinate plane.

chord A line segment whose endpoints are points on a circle. A
diameter is a chord that passes through the center of the circle.

circle The set of all points in a plane that are a given distance from
a given point.

circumference The distance around the edge of a circle.
complement An angle that is paired with another angle so that the

sum of their measures is 90 degrees.
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congruent Having the same dimensions. If you put congruent
shapes on transparent paper and hold them up on top of each
other, you can’t tell them apart.

coordinate plane The grid system in which the x-axis (horizontal)
and the y-axis (vertical) provide reference points; coordinates
tell you locations in the plane and are determined by the dis-
tance along the axes.

corresponding angle When two parallel lines are crossed by a
transversal line, the corresponding angles are in the same loca-
tion around the two parallel lines relative to the transversal. In
other words, if the parallel lines are horizontal, the top left angle
around the top parallel line corresponds with the top left angle
around the bottom parallel line. Corresponding angles have the
same measure.

degree A unit of measure of angles; there are 360 degrees (written
360º) in the circle.

diameter The distance across the widest part of a circle; twice the
radius. Also, a chord that passes through the center of the circle.

edge A line segment at the boundary of a polygon; a line segment
at the intersection of two faces of a polyhedron.

equilateral triangle A triangle in which all the sides are congru-
ent and all the angles are congruent.

expression A symbol, number, or combination of either or both,
representing a quantity or relation between quantities. If an
equation is a mathematical sentence, an expression is a math-
ematical phrase.

exterior The outside of something; exterior walls are the outsides
of buildings.

glide reflection A rigid motion combining translation and reflec-
tion. A symmetric pattern produced by a glide reflection must be
presumed to be infinite.

gradient A measure of angles; there are 400 gradients in a circle.
horizontal Parallel to the horizon; oriented side to side rather than

up and down (i.e., the orientation of the x-axis).
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hypotenuse The side opposite the right angle in a right triangle.
interior The inside of something; interior walls don’t show from the

outsides of buildings.
isosceles triangle A triangle having two sides, called the legs, of

equal length.
kite A quadrilateral with two pairs of adjacent sides with equal

lengths. (The other common definition, though not used in this
book, says that the two pairs must have different lengths, mean-
ing that a rhombus and a square are not special cases of a kite.)

legs The sides of an isosceles triangle that have equal length, or
the sides of a right triangle that are adjacent to the right angle.
Also the (usually) nonparallel sides of a trapezoid.

line One of the three undefined figures in geometry, a line has no
thickness, is perfectly straight, and goes on forever in both direc-
tions. Two points determine a unique line.

line of symmetry A line over which a figure can be reflected,
resulting in a figure that looks exactly like the original.

line segment A finite portion of a line, often denoted by its end-
points.

net A two-dimensional representation of a three-dimensional
shape; a net shows all the faces of a given three-dimensional
figure laid out in two dimensions, so if the two-dimensional
shape were cut out of paper and folded along the joins, it would
make the three-dimensional shape.

obtuse angle An angle measuring between 90 and 180 degrees.
one-dimensional An object that has a measurement in only one

direction. A line is one-dimensional.
origin The point in the Cartesian coordinate system at which the

x- and y-axes cross.
parallel Lines in the same plane that have the same slope and

thus never meet are considered parallel, as are line segments
that would never meet if extended into lines. Planes, or shapes
within two planes, are parallel if they are the same distance
apart everywhere on the shape or plane.
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parallelogram A quadrilateral with both pairs of opposite sides
parallel.

perimeter The distance around the sides of a polygon or a circle.
perpendicular Lines or line segments that meet at right angles to

each other.
pi A constant, approximately equal to 3.1416, defined as the ratio

of a circle’s circumference to its diameter.
planar Two-dimensional, or lying in a plane.
plane One of the three undefined figures in geometry, a plane is a

flat expanse, like a sheet of paper, that goes on forever. Any
three points not on the same line, or a line and a point, determine
a unique plane.

point One of the three undefined figures in geometry, a point is a
location with no length, width, or height.

polygon A two-dimensional closed figure made up of straight line
segments.

polyhedron (plural: polyhedra) A three-dimensional closed fig-
ure made up of faces that are all polygons.

prism A polyhedron with identical, parallel top and bottom faces
connected by sides that are all parallelograms. In right prisms,
the side faces are rectangles, meaning they meet the top and
bottom faces at right angles.

protractor An instrument for measuring angles on paper.
Pythagorean theorem In a right triangle, the sum of the squares of

the legs is equal to the square of the hypotenuse.
quadrilateral A polygon with four sides.
radian A measurement of angles; there are approximately

6.2831853, or 2π, radians in a circle.
radius (plural: radii) The distance from the center of a circle to any

point on its edge; half the diameter. Also, a segment whose end-
points are the center of the circle and a point anywhere on the
circle.

ray A portion of a line extending in one direction from a point;
sometimes called a half line.
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rectangle A quadrilateral in which all the angles have the same
measure (90 degrees).

reflection A rigid motion in which a shape is reflected over a line,
as it would be reflected if a mirror were held along the reflecting
line.

reflex angle An angle measuring more than 180 degrees.
regular Made up of identical parts; a regular polygon is one in

which all sides have the same length and all the angles have the
same measure.

rhombus A quadrilateral in which all sides have the same length.
right angle An angle measuring 90 degrees.
rigid motion A motion of an object that preserves its original meas-

urements. Also known as rigid transformation or isometry.
rotation A rigid motion in which a figure is rotated around a given

point (either on or off the figure) by a given angle.
scalene A polygon is scalene if its sides are all different lengths.
semiregular polyhedron A polyhedron made up of two or more dif-

ferent types of regular polygons arranged in the same sequence
around each vertex.

solid A closed, three-dimensional figure.
square A quadrilateral in which all sides have the same length

and all angles are right angles.
surface area The sum of the areas of the faces of a polyhedron. See

also area.
supplement An angle that is paired with another angle so that the

sum of their measures is 180 degrees.
symmetry A property by which a figure looks the same after a

given rigid motion as it did before.
tessellation A covering of the plane, sometimes referred to as a

tiling, referring to the way that tiles cover a floor.
three-dimensional An object that has a measurement in three

directions. A cube is three-dimensional, as are all polyhedra.
tiling See tessellation.
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translation A rigid motion in which a figure is moved a given dis-
tance in a given direction.

transversal A line that intersects two parallel lines.
trapezoid A quadrilateral with at least one pair of parallel sides.

(The other common definition, not used in this book, says it must
have exactly one pair of parallel sides.)

two-dimensional An object that has a measurement in two direc-
tions. A plane is two-dimensional, as are all figures on a plane
(squares, rectangles, circles).

undefined terms “Point,” “line,” and “plane” are the three unde-
fined terms of geometry, upon which all other definitions are ulti-
mately based. We can describe them and state their properties,
but we can’t provide rigorous mathematical definitions.

variable A symbol that stands for an unknown quantity in a math-
ematical expression or equation.

vertex (plural: vertices) The point of intersection of two lines, line
segments, or rays that makes up an angle in two dimensions; the
point of intersection of three or more planes or planar faces in
three dimensions.

vertical Upright or perpendicular to the horizon. Compare
horizontal.

vertical angles Where two lines intersect, vertical angles are
those that are on opposite sides of the vertex from each other.

volume The three-dimensional space taken up by an object.
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A
acute angles, 13, 26
algebra, 100, 101
alternate angles, 20–21, 40
angles

acute, 13, 26
alternate, 18–21, 40
alternate exterior, 20–21
alternate interior, 20, 40
complements of, 14–17
congruent, 23
corresponding, 17–19
defined, 10
degrees in, 12–13
expressions for, 16
exterior, 20–21, 40
interior, 19, 20, 40, 114, 159
measures for, 12–13, 29–30
measuring with protractor, 26–28
naming, 24–25
obtuse, 13, 26–27
reflex, 13, 27–28
right, 13, 14
straight, 40, 41
sum in triangles, 39–41
supplements of, 14–17
vertical, 22–24

Archimedean polyhedra, 108–109
Archimedean solids, 116
area

base and, 78
of circles, 89, 95, 96–99
of cylinders, 128–129

defined, 49–52
factors and, 64–66
height and width and, 53, 62–64, 78
measurement units for, 51–52, 67–72
of parallelograms, 73–76, 82
of rectangles, 52–53, 54, 55–57, 59–61,

63–64, 66–67
reducing, 61
relationship to perimeter, 53–57,

59–61
resources on the Web, 84–85
of squares, 55, 61
of trapezoids, 73, 78, 79–84
of triangles, 66–67, 81

B
base 

of parallelograms and trapezoids,
76, 78, 82

of polyhedra, 109–110
of triangles, 32, 76

bilateral symmetry, 146
binary number system, 103
Buffon’s needle experiment, 103

C
Cartesian geometry, 3
chords, 88
circles

area of, 89, 95, 96–99
chord of, 88
circumference of, 89–93, 95–96, 120
defined, 87, 93–94
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circles (continued)
degrees in, 12, 29, 30
diameter of, 88–93
lines of symmetry in, 153–154
measuring, 29–30, 89
perimeter and, 88–89, 95–96
pi and, 92–93, 95, 96, 98–103
radius of, 88, 90, 91, 93, 95, 97
resources on the Web, 104
sectors of, 97
triangles in, 97, 99

circumference, 89–93, 95–96, 120
complements, 14–17
congruent angles, 23
congruent sides, of kites, 44, 45
congruent triangles, 41
coordinate plane geometry, 3
coordinates of points, 6
corresponding angles, 17–19
counterexamples, 60
cubes, 107–112, 114, 118–119, 130
cubic inches, 124, 125–127
cylinders, 119–121, 128–129

D
definitions, finding, 22
degrees

of angles, 12–13
of angles in triangles, 39–41
in circles, 12, 29, 30

diameter, 88–93
dimension in geometric figures, 4
dimensionless geometric figures, 4
dodecahedra, 107, 108, 112, 114, 131

E
edges, of solids, 107, 109–111, 113–114,

118
equiangular quadrilaterals, 43
equilateral quadrilaterals, 43
equilateral triangles, 32, 38

Euclidean plane, 159
Euler’s formula, 109
exponents, 69
expressions for angles, 16, 17
exterior angles, 19, 20–21

F
faces, of solids, 106–110, 111, 113–114,

118
factors, 64–66
Fuller, Buckminster, 117

G
glide reflection, 138, 142–143, 144,

160–161
glide reflectional symmetry, 144, 147,

157, 160–161
gradients, 29, 30

H
height

area and perimeter and, 53, 62–64,
76, 78

of parallelograms, 74, 76, 77–78, 82
of rectangular prisms, 119
of trapezoids, 76, 77–78, 79, 82–84
of triangles, 76

hexagonal pyramid, net of, 132
hexagons, 114, 132
hexahedra, 107, 108
History of Pi, A (Beckman), 103
horizontal symmetry, 148, 149–150
hypotenuse, 35, 38

I
icosahedra, 107, 108, 112, 114, 131
incommensurable line segments, 

102
interior angles, 19, 20, 114, 159
irrational numbers, 92, 99–102, 103
isosceles trapezoids, 44, 46, 80–81
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isosceles triangles, 31, 32, 38
isometries, 138

K
Kepler, Johannes, 116
kites, 43, 44, 45, 46

L
“lateral,” defined, 32, 42
legs, of isosceles triangles, 32
length

measurement units, 70, 101
of parallelograms, 74, 78
of rectangles, 58, 64, 75, 76, 119
of trapezoids, 78, 79

linear units, 51–52, 89
lines

described, 8–9
as one-dimensional, 4
parallel, 18, 21, 79, 80
perimeter of, 58
perpendicular, 74, 77
of symmetry, 148, 151–156
symmetry in, 146
as undefined term, 4, 5
zero thickness of, 8, 58

line segments
described, 8–9
incommensurable, 102
notation for, 10
and perpendicular lines, 77
parallel, 80
and trapezoids, 79–80

locations, points and, 6–7

M
measurements

accuracy in, 1, 99–102
of angles with protractor, 25–28
irrational numbers and, 99–102
of pi, 92–93

measurement units
for area, 51–52, 67–72, 127
for circles, 89
converting, 69–72
cubic, 124, 125–127
for length, 69–71
linear, 51–52, 89
for perimeter, 51–52
square, 52, 54, 61, 68–72, 89
for surface area, 123
two-dimensional, 52
for volume, 123, 125–127

meters squared, 68–69
minutes, 29
mirror symmetry, 146, 148

N
nets of solids, 129–133
nonregular polyhedra, 108–109
notations

for angles, 24–25
for lines and segments, 10, 25
for meters squared and square

meters, 68–69
for squared numbers and square

roots, 34

O
obtuse angles, 13, 26–27
octagons, tessellation with, 158
octahedra, 107, 108, 112, 114, 131
one-dimensional geometric figures, 4.

See also lines
order of operations for expressions, 17
origin, 3

P
parallel lines, 18, 21, 80
parallelograms

area and perimeter of, 73–76, 82
base of, 76, 82
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parallelograms (continued)
defined,  44
height of, 74, 76, 77–78, 82
length of, 74
in quadrilateral Venn diagram, 46

pentagons, 114
perimeter 

circumference versus, 95–96
defined, 49–52
height and width and, 53, 62–64
of lines, 58
measurement units for, 51–52
of parallelograms, 73–76
of rectangles, 51, 52–54, 55–57, 59–61,

64
relationship to area, 53–57, 59–61
resources on the Web, 84–85
of squares, 55, 61
of trapezoids, 73

perpendicular lines, 74, 77
pi, 92–93, 95, 96, 98–103, 120
planar geometry, 3–4
planes

Euclidean, 159
symmetries in, 143–147
tessellation of, 157–161
as undefined term, 4, 5

Plato, 112, 115–116
Platonic solids, 112–114, 115–117
points

coordinates of, 6
described, 6–7
symmetry in, 145
as undefined term, 4, 5

polygons, 42, 87, 113, 114, 159
polyhedra. See also specific types

Archimedean, 108–109, 116
bases of, 109–110
classification of, 107–109
defined, 106–107
edges of, 107, 109, 110–111

Euler’s formula for, 109
faces of, 106, 107, 108, 109–110, 111
nets of, 130–131
nonregular, 108–109
Platonic solids, 112–114, 115–117
regular, 107, 108
semiregular, 107, 108–109
truncating, 115–117
vertices of, 107, 108, 109, 111

polyhedral molecules, 117
prisms, 107, 110, 124–125, 127–128, 

132
protractors, 26–28
pyramids, 110, 132
Pythagorean theorem, 34–36, 38

Q
quadrilaterals. See also specific

quadrilaterals
defined, 42
equiangular, 43
equilateral, 43
relationships among, 45–46
types of, 43–46
Venn diagram of, 46

R
radians, 29, 30
radicals, 34
radius, 88, 90, 91, 93, 95, 120
rays, described, 8, 9
rectangles

area of, 52–53, 54, 55–57, 59–61, 63–64
defined, 43, 44, 45
factors and, 64–66
height of, 120
length of, 58, 64, 75, 76, 120
perimeter of, 51, 52–54, 55–57, 59–61,

64
in quadrilateral Venn diagram, 46
width of, 75, 76
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rectangular prisms, 119, 124–125,
127–128, 132

reflection, 138, 139–141, 144, 152, 153,
160–161

reflectional symmetry, 144, 146, 148,
154

reflex angles, 13, 27–28
regular figures, 32
regular polyhedra, 107, 108
rhombuses, 43, 44, 46
right angles, 13, 14
right triangles, 34–39, 66–67, 81
rigid motions, 138–144, 146, 147, 155,

156. See also glide reflection;
reflection; rotation; translation 

rigid transformations, 138
rotation, 138, 139–141, 144, 154, 155–156,

160–161
rotational symmetry, 144,–145

S
scalene quadrilaterals, 43, 44, 46
scalene triangles, 31, 32–33
sectors of circles, 97
segments, line. See line segments
semiregular polyhedra, 107, 108–109
solids. See also polyhedra; other 

specific solids
Archimedean, 116
bases of, 109–110
edges of, 107, 109–111, 113–114, 118
faces of, 106–110, 111, 113–114, 118
nets of, 129–133
Platonic, 112–114, 115–117
surface area of, 117–122, 123
as three-dimensional figures, 105
volume of, 122–129

special right triangles, 37–39
square roots, 34
squares

area and perimeter of, 55, 61

cubes and, 118
defined, 43–44
lines of symmetry in, 151, 154–155
in quadrilateral Venn diagram, 

46, 
tessellation with, 158

square units
in circles, 89
converting, 69–72
feet, 52, 54, 61
kilometers, 69–71
meters, 68–69
miles, 69–71
in two dimensions, 52

squaring numbers, 34
straight angles, 40, 41
supplements, 14–17
surface areas

of cubes, 118–119
of cylinders, 119–121, 128–129
defined, 117, 123
finding, 118–120
measurement units for, 123
practical applications for, 121–122
of rectangular prisms, 119, 125,

127–128
volume and, 123, 127–129

symmetry
combinations of, 161
defined, 137–138, 143
glide reflectional, 142, 147, 157, 160
horizontal, 148, 149–150
lines of, 148, 151–154, 155
plane, 143–147
point, 145
reflectional, 144, 146, 148, 154
resources on the Web, 161–163   
rigid motions, 138–144, 146, 147, 155,

156
rotational, 144, 145
tessellation and, 160–161
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symmetry (continued)
translational, 144, 146–147, 157
vertical, 148–149

T
tessellation, 157–161
tetrahedra, 107, 108, 112, 114, 130
three-dimensional figures. See also

polyhedra; solids; specific figures
introduction to, 105–106
resources on the Web, 133–135

tiling, 157–161
Timaeus (Plato), 112
translation, 138, 142, 143, 144, 146,

160–161
translational symmetry, 144, 146–147,

157
transversals, 18, 19, 20, 21, 40
trapezoids

area of, 73, 78, 79–84
base of, 76, 78
defined, 44, 46
height and length of, 76, 77–78, 79,

82–84
isosceles, 44, 46, 80–81
in quadrilateral Venn diagram, 46

triangles
area of, 66–67, 81
base of, 32, 76
in circles, 97
congruent, 41
equilateral, 32, 38
height of, 76
isosceles, 31, 32, 38
legs of, 32
lines of symmetry in, 151
180 degrees in angles in, 39–40
right, 34–39, 66–67, 81
scalene, 31, 32–33
special right, 37–39
vertices in, 12

truncation, 115–117
two-dimensional geometric figures.

See also specific figures
areas and perimeters of, 49–52
introduction to, 4–10
measuring, 52
resources on the Web, 47–48

U
undefined terms of geometry, 4–6
units of measurement. See measure-

ment units

V
variables, 16
Venn diagram of quadrilaterals, 46
vertical angles, 22–24
vertical symmetry, 148–149
vertices, 11–12, 107, 108, 109, 111,

113–114
volume

of cylinders, 128–129
defined, 122, 123
measurement units for, 123, 125–127
of rectangular prism, 124, 127–128
surface area and, 123, 127–129

W
Web Sites

area and perimeter, 84–85
circles and pi, 104
symmetry, 161–163
three-dimensional figures, 133–135
two-dimensional figures, 47–48

width, 53, 62–64, 75, 76

X
x-axis, 3, 7

Y
y-axis, 3, 7
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